Advertisement

Simulation as an aid to phenomenological modeling

  • Joel H. Ferziger
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 230)

Keywords

Large Eddy Simulation Reynolds Stress Eddy Viscosity Isotropic Turbulence Passive Scalar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antinopoulos-Domis, M., “Large Eddy Simulation of a Passive Scalar in Isotropic Turbulence,” Report QMC P 6037, Queen Mary College, 1979.Google Scholar
  2. Aupoix, B., and Cousteix, J., “Large Eddy Simulation of Turbulence Undergoing Rotation,” Proc. Fourth Symp. Turb. Shear Flows, Karlsruhe, 1983.Google Scholar
  3. Bardina, J., Ferziger, J. H., and Reynolds, W. C., “Improved Subgrid Models for Large Eddy Simulation,” AIAA paper 80-1357, 1980.Google Scholar
  4. Bardina, J., Ferziger, J. H., and Reynolds, W. C., “Contributions to Large Eddy Simulation of Turbulent Flows,” Report TF-19, Dept. of Mech. Engrg., Stanford U., 1983.Google Scholar
  5. Cain, A. B., Reynolds, W. C., and Ferziger, J. H., “Simulation of the Transition and Early Turbulent Regions of a Free Shear Flow,” Report TF-14, Dept. of Mech. Engrg., Stanford U., 1981.Google Scholar
  6. Feiereisen, W. J., Reynolds, W. C., and Ferziger, J. H., “Computation of Compressible Homogeneous Turbulent Flows,” Report TF-13, Dept. of Mech. Engr., Stanford U., 1981.Google Scholar
  7. Ferziger, J. H. and McMillan, O. J., “Studies of Structure and Modeling in Turbulent Shear Flows, Nielsen Engineering and Research, Mt. View, Ca., 1985 (in press).Google Scholar
  8. Jones, W. P., and Launder, B. E., “The Prediction of Laminarization with a Two-equation Model of Turbulence,” Intl. J. Heat Mass Transfer, Vol. 15, 301, 1972.Google Scholar
  9. Kays, W. M., and Crawford, M. E., Convective Heat and Mass Transfer, Second ed., McGraw-Hill, New York, 1978.Google Scholar
  10. Kline, S. J., Lilley, G. M., and Cantwell, B. J., Proceedings of the 1980-81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows, Dept. of Mech. Engrg., Stanford University, Stanford, CA, 1981.Google Scholar
  11. Kline, S. J., Ferziger, J. H., and Johnston, J. P., “Calculation of Turbulent Shear Flows: Status and Ten-Year Outlook,” ASME J. Fluids Engrg., Vol. 100, 3, 1978.Google Scholar
  12. Launder, B. E., and Spalding, D. B., “The Numerical Computation of Turbulent Flow,” Comp. Meth. in Appl. Mech. and Engrg., C3D, 269, 1974.Google Scholar
  13. Lee, M. J. and Reynolds, W. C., “Numerical Experiments of the Structure of Homogeneous Turbulence,” Report TF-22, Dept. of Mech. Engrg., Stanford Univ., 1985 (in preparation).Google Scholar
  14. Moser, R. D., and Moin, P., “Direct Simulation of Turbulent Flow in a Curved Channel,” Rept. TF-20, Dept. of Mech. Engr., Stanford U., 1984.Google Scholar
  15. Reynolds, W. C., “Phenomenological Turbulence Modeling,” in Ann. Revs. Fluid Mech., Vol. 8, p.183, 1976.Google Scholar
  16. Reynolds, W. C., “Modeling of Fluid Motions in Engines—An Introductory Overview,” Proc. Symp. Combustion Modeling in Reciprocating Engines, Plenum, p. 41, 1980.Google Scholar
  17. Rodi, W., Turbulence Models and Their Applications in Hydraulics, Intl. Assn. for Hydraulics Research, Delft, 1980.Google Scholar
  18. Rogallo, R. J., “Experiments in Homogeneous Turbulence,” Report TM-81315, NASA-Ames Research Center, 1981.Google Scholar
  19. Rotta, J. C., “Statische Theorie Nichthomogener Turbulenz,” Z. Physik, C129D, S547, 1951.Google Scholar
  20. Shirani, E., Ferziger, J. H., and Reynolds, W. C., “Simulation of Homogeneous Turbulent Flows Including a Passive Scalar,” Report TF-15, Dept. of Mech. Engrg., Stanford U., 1981.Google Scholar
  21. Smagorinsky, J., “General Circulation Experiments with the Primitive Equations. I. The Basic Experiment,” Mon. Wea. Rev., C91D, 99, 1963.Google Scholar
  22. Tavoularis, S., “Experiments in Turbulent Transport and Mixing,” dissertation, Johns Hopkins U., 1978.Google Scholar
  23. Tennekes, H., and Lumley, J. L., A First Course in Turbulence, MIT Press, 1972.Google Scholar
  24. Tzuoo, K. L., Ferziger, J. H., and Kline, S. J.,-"Zonal Models for Homogeneous Flows,” internal report, Dept. of Mech. Engrg., Stanford Univ., 1984.Google Scholar
  25. Wu, C. T. and Ferziger, J. H., “Simulation and Modeling of Compressed Turbulence,” Report TF-21, Dept. of Mech. Engrg., Stanford U., 1985.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Joel H. Ferziger
    • 1
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations