Spectral closures to derive a subgrid scale modeling for large eddy simulations

  • Jean-Pierre Chollet
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 230)


Spectral two-point closures are used to derive a subgrid scale model for large eddy simulations of velocity and passive scalar fields of fully developed three-dimensional isotropic turbulence. This model is a “full coupling” of explicit calculations of large scales and statistical evolutions of small scales. It can be simplified into a formalism of eddy-viscosity and eddy diffusivity. The predictability of the large scales is impaired by the growth of errors which can appear in small scales ; this error-growth is studied by comparing two realizations of the velocity field.


Large Eddy Simulation Eddy Viscosity Statistical Closure Isotropic Turbulence Error Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aupoix, B., 1984, Eddy viscosity subgrid scale models for homogeneous turbulence, Workshop on Macroscopic modelling of turbulent flows and fluid mixtures, Nice, Déc. 1984.Google Scholar
  2. Bertoglio, J.P., 1984, A stochastic subgrid model for sheared turbulence, Workshop on Macroscopic modelling of turbulent flows and fluid mixtures, Nice, Déc. 1984.Google Scholar
  3. Chollet, J.P., 1983 a, Statistical closure to derive a subgrid-scale modelling for large eddy simulations of three-dimensional turbulence, NCAR Technical Note TN-206 + STR, Boulder, Colorado.Google Scholar
  4. Chollet, J.P., 1983 b, Two-point closures as a subgrid scale modelling for large eddy simulations, Turbulent shear flows IV, ed. Springer-Verlag.Google Scholar
  5. Chollet J.P. and Lesieur,M., 1981, Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures, J. Atmos. Sci., 38, 2747–2757.Google Scholar
  6. Chollet J.P. and Lesieur, M., 1982, Modélisation sous-maille des flux de quantité de mouvement et de chaleur en turbulence tridimensionnelle isotrope, La Meteorologie, VIe série, 29 et 30, 183–191.Google Scholar
  7. Chollet, J.P., 1984, Turbulence tridimensionnelle isotrope: modélisation statistique des petites echelles et simulation numérique des grandes echelles, Thèse de Doctorat es Sciences, Université de Grenoble.Google Scholar
  8. Herring, J.R., Riley J.J., Patterson, G.S. and Kraichnan, R.H., 1973, Growth of uncertainty in decaying isotropic turbulence, J. Atmos. Sci., 30, 997–1006.Google Scholar
  9. Herring, J.R., Schertzer, D., Lesieur, M., Newman, G.R., Chollet, J.P. and Larchevêque, M., 1982, A comparative assessment of spectral closures as applied to passive scalar diffusion, J. Fluid Mech., 124, 411–437.Google Scholar
  10. Kraichnan, R.H., 1976, Eddy-viscosity in two and three dimensions, J. Atmos. Sci., 33, 1521–1536.Google Scholar
  11. Leith, C.E., 1971, Atmospheric predictability and two-dimensional turbulence, J. Atmos. Sci., 28, 145–161.Google Scholar
  12. Leith, C.E. and Kraichnan, R.H., 1972, Predictability of turbulent flows, J. Atmos. Sci., 29, 1041–1058.Google Scholar
  13. Lesieur, M. and Schertzer, D., 1978, Amortissement autosimilaire d'une turbulence à grand nombre de Reynolds, J. Mécanique, 17, 610–646.Google Scholar
  14. Leslie,D.C. and Quarini, G.L., 1979, The application of turbulence theory to the formulation of subgrid modelling procedures, J. Fluid Mech., 91, 65–91.Google Scholar
  15. Metais, 0., Chollet, J.P. and Lesieur, M., 1983, Predictability of the large scales of freely evolving three and two-dimensional turbulence, A.I.P. Conference Proceedings, no 106, “Predictability of fluid motions”, La Jolla Institute.Google Scholar
  16. Metais, O. and Lesieur, M., 1984, Statistical precictability of decaying turbulence, submitted to J. Atm. Sci.Google Scholar
  17. Pouquet, A., Frisch, U. and Chollet, J.P., 1983, Turbulence with a spectral gap, Phys. Fluids, 26, 877–880.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Jean-Pierre Chollet
    • 1
  1. 1.Institut de Mécanique de GrenobleSaint-Martin d'Hères Cedex

Personalised recommendations