Time-dependent rayleigh-benard convection in low prandtl number fluids

  • M. Meneguzzi
  • C. Sulem
  • P.L. Sulem
  • O. Thual
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 230)


We present three-dimensional numerical simulations of time-dependent convection in low Prandtl number fluids confined between two infinite horizontal bounding surfaces maintained at constant temperatures. We consider the case of free slip boundary con ditions for a fluid of Prandtl number Pr = 0.2 and that of nonslip boundary conditions for a fluid with Px = 0.025. In the former situation, we observe stationary, periodic, bi-periodic and chaotic regimes as the Rayleigh number is increased. In the latter situation, the characteristic times have different orders of magnitude and the transients have a long persistence. The first bifurcations to oscillatory regimes are obtained in this case.


Prandtl Number Rayleigh Number Chaotic Regime Oscillatory Instability Beer Sheva 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Libchaber A. and Maurer J., J. Physique, C3, 41 (1980), 51.Google Scholar
  2. [2]
    Libchaber A., Fauve S. and Laroche C., Physica 70 (1983), 73.Google Scholar
  3. [3]
    Schluter A., Loltz D. and Busse F.H., J. Fluid Mech. 23 (1965), 129.Google Scholar
  4. [4]
    Busse F.H., J. Fluid Mech. 52 (1972), 97.Google Scholar
  5. [5]
    Clever R.M. and Busse F.H., J. Fluid Mech. 65 (1974), 625.Google Scholar
  6. [6]
    Clever R.M. and Busse F.H., J. Fluid Mech. 102 (1981), 61.Google Scholar
  7. [7]
    Curry J.H., Herring J.R., Loncaric J. and Orszag S.A., J. Fluid Mech. 147 (1984), 1.Google Scholar
  8. [8]
    Lipps F.B., J. Fluid Mech. 75 (1976), 113.Google Scholar
  9. [9]
    McLaughlin J. and Orszag S.A., J. Fluid Mech. 122, (1982), 123.Google Scholar
  10. [10]
    Ruelle D., Takens F. and Newhouse S., Comm. Math. Phys. 64 (1978), 35.Google Scholar
  11. [11]
    Kleiser L. and Schumann U., Notes on Num. Fluid Mech. Vol. 2, E.H. Hirschel ed. Proc. Num. Meth. in Fluid Mech. DFVLR, Cologne (1979).Google Scholar
  12. [12]
    Sulem P.L., Sulem C. and Thual 0., Proc. 4th Beer Sheva Seminar on MHD flows and Turbulence (1984), AIAA Progress in Astronautics and Aeoronautics, in press.Google Scholar
  13. [13]
    Chandrasekhar, S. Hydrodynamic and Magnetohydrodynamic stability, Oxford University Press (1961).Google Scholar
  14. [14]
    Busse F.H. and Clever R.M., J. Meca. Theor. et Appl. 2 (1983), 495.Google Scholar
  15. [15]
    Palm E., Skogvang A. and Tveitereid M., IUTAM conference (August 1984).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • M. Meneguzzi
    • 1
  • C. Sulem
    • 2
    • 3
  • P.L. Sulem
    • 4
    • 5
  • O. Thual
    • 6
  1. 1.CEACNRS and Service d'AstrophysiqueSaclayFrance
  2. 2.Dept. of MathematicsBen Gurion University of the NegevBeer ShevaIsrael
  3. 3.CNRSUniversity de NiceFrance
  4. 4.School of MathematicsTel Aviv UniversityIsrael
  5. 5.CNRSObservatoire de NiceFrance
  6. 6.Centre National de Recherches MétéorologiquesToulouse-MirailFrance

Personalised recommendations