Numerical simulation of homogeneous turbulence

  • K. Dang
  • Ph. Roy
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 230)


This paper describes the main results of direct simulation and large eddy simulation of homogeneous turbulence submitted to two kinds of constant mean velocity gradients. The Taylor microscale Reynolds number is in the range 20–70. The two strains considered are plane strain and solid body rotation. For the plane strain case, the two described simulations show clearly the reorganizing processes of the turbulent field after each abrupt change of the imposed strain. For the rotation case, three different effects of the rotation are enhanced by a judicious choice of appropriate initial turbulent (isotropic and anisotropic) or random initial conditions.


Plane Strain Rotation Axis Large Eddy Simulation Homogeneous Turbulence Spectral Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BARDINA, J., FERZIGER, J.H., and REYNOLDS, W.C.: “Improved turbulence models based on Large Eddy Simulation of homogeneous, incompressible, turbulent flows”, Report TF-19, Stanford University, Stanford, Calif., May 1983.Google Scholar
  2. [2]
    BASDEVANT, C., and SADOURNY, R.: “Parametrisation of virtual scale in numerical simulation of two dimensional turbulent flowsrd, J. Méc. Th. et Appl. n° special, 1983Google Scholar
  3. [3]
    BERTOGLIO, J.P.: “A stochastic subgrid model for sheared turbulence”. Proceedings of workshop on macroscopic modelling of turbulent flows and fluid mixtures — Springer-Verlag, 1985, Ed. O. PIRONNEAU.Google Scholar
  4. [4]
    CAMBON, C.: “Etude spectrale d'un champ turbulent incompressible soumis à des effets couplés de déformation et de rotation, imposés extérieurement”. Thèse de doctorat d'Etat Univ. C1. Bernard, Lyon, 1982.Google Scholar
  5. [5]
    CHOLLET, J.P.: “Statistical closure to derive a subgrid-scale modeling for large eddy simulations of three-dimensional turbulence”, NCAR Technical Note, TN-206-STR, Boulder, Colorado, 1983.Google Scholar
  6. [6]
    CHOLLET, J.P., LESIEUR, M.: “Paramaterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures”, J. of Atmos. Sciences, vol. 38, 1981.Google Scholar
  7. [7]
    DANG, K.: “Evaluation of simple subgrid-scale models for the numerical simulation of anisotropic turbulence”, AIAA paper 83-1692, to be published in the AIAA Journal, 1983.Google Scholar
  8. [8]
    DANG, K.: “Numerical simulation of homogeneous turbulence submitted to plane strains and rotation”. Euromech 180 Colloquium on “Turbulence Modelling”, Karlsruhe (RFA) 4–6 July 1984. TP ONERA 1984-54.Google Scholar
  9. [9]
    DELORME, Ph.: “Simulation numérique de turbulence homogene, isotrope, bidimensionnelle pour un fluide compressible”. La Recherche Aérospatiale, 1984-1.Google Scholar
  10. [10]
    ENSELME, M., FRABOUL, C., LECA, P.: “A MIMD architecture system for PDE numerical simulation”. 5th IMACS Symposium on Computer Methods for Partial Differential Equations Proceedings, Betlehem USA, 19–21 June 1984.Google Scholar
  11. [11]
    GENCE, J.N.: “Action de deux déformations planes sucessives sur une turbulence isotrope”, Thèse de Doctorat d'Etat, Université Claude Bernard, LYON, 1979.Google Scholar
  12. [12]
    HOPFINGER, E.J., BROWAND, F.K., GAGNE, Y.: “Turbulence and waves in a rotating tank”, J.F.M., vol. 125, 1982.Google Scholar
  13. [13]
    LECA, P., ROY, Ph.: “Simulation numérique de la turbulence sur des mini-systèmes à processeurs attachés (en configuration mono ou multi-processeur), La Recherche Aérospatiale n° 1983-4. French and English editions.Google Scholar
  14. [14]
    LESLIE, D.C., QUARINI, G.L.: “The application of turbulence theory to the formulation of subgrid modelling procedures”, J.F.M. 91, 65–91 (1979).Google Scholar
  15. [15]
    LUMLEY, J.L., NEWMAN, G.R. “The return to isotropy of homogeneous turbulence, J.F.M. 82, 161–178, 1977.Google Scholar
  16. [16]
    MORY, M. and HOPFINGER, E.J.: “Rotating turbulence evolving freely from an initial quasi 2-D state”, Proceedings of Workshop on macroscopic modelling of turbulent flows and fluid mixtures. Springer-Verlag, 1985, Ed. O. PIRONNEAU.Google Scholar
  17. [17]
    ROGALLO, R.S.: “Numerical experiments in homogeneous turbulence”, NASA TM 81315-1981.Google Scholar
  18. [18]
    ROGALLO, R.S., MOIN, P.: “Numerical Simulation of Turbulent Flows”, Ann. Rev. Fluid Mech., Vol 16, 1984.Google Scholar
  19. [19]
    ROY, Ph.: “Numerical simulation of homogeneous anisotropic turbulence”, 8th Int. Conference on Numerical Methods in Fluids Dynamics, Proceedings, Springer-Verlag, Lecture Notes in Physics vol 170, Ed. E. KRAUSE.Google Scholar
  20. [20]
    ROY, Ph.: “Numerical simulation of homogeneous turbulence submitted to two successive plane strains and to solid-body rotation”, Proceedings, 4th Seminar on “MHD Flows and Turbulence”, Beer Sheva (Israel), 1984.Google Scholar
  21. [21]
    WIGELAND, R.A., NAGIB, H.M.: “Grid generated turbulence with and without rotation about the streamwise direction”. IIT Fluids and heat transfer report R78-1. Illinois institute of technology, 1978.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • K. Dang
    • 1
  • Ph. Roy
    • 1
  1. 1.Office National d'Etudes et de Recherches AérospatialesChâtillon CedexFrance

Personalised recommendations