Advertisement

Homogenization and visco-elasticity of turbulence

  • Z. S. She
  • U. Frisch
  • O. Thual
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 230)

Abstract

A multiple-scale analysis (homogenization) is applied to study the stability of steady cellular solutions of the one-dimensional Kuramoto-Sivashinsky equation with 2π-periodic boundary conditions. It is found that these solutions exhibit visco-elastic behaviour under very large wavelength perturbations. This elasticity property is then extended to Navier-Stokes turbulence. It is suggested that two-dimensional flame fronts and various turbulent flows (e.g. solar granulation and cloud streets) may display elasticity. Inclusion of elasticity into engineering turbulence modelling is also discussed.

Keywords

Cellular Motion Elastic Effect Engineering Turbulence Solar Granulation Slow Time Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bensoussan, A., Lions, J.L. and Papanicolaou, G., 1078. Asymptotic Analysis for Periodic Structures, North Holland.Google Scholar
  2. Chacon, J. and Pironneau, O., 1984. On the mathematical foundations of the K-E turbulent model, Preprint, I.N.R.I.A.Google Scholar
  3. Coullet, P. 1984. Private communicationGoogle Scholar
  4. Crow, 1968. Phys. Fluids 33, l.Google Scholar
  5. Faure, S., 1984. Private communicationGoogle Scholar
  6. Frisch, U., 1983. Turbulent transport of temperature, magnetic field and monumentum, preliminary notes available.Google Scholar
  7. Frisch, U., She, Z.S. and Thual, O., 1984. On the elastic behaviour of turbulence, A case study of the Kuramoto-Sivash.insky model, preprint submitted to J. Fluid Mech.Google Scholar
  8. Gottlieb, P. and Orszag, S., 1977. Numerical Analysis of Spectral Methods, SIAM, Philadelphia.Google Scholar
  9. Kuramoto, Y., 1978. Prog. Theor. Suppl. 64, 346.Google Scholar
  10. Larsen, E., 1980. Nucl. Sci. Eng. 73, 274.Google Scholar
  11. Mc Laughlin, D., Papanicolaou, G. and Pironneau, O., 1983. Simulation numérigue de la turbulence par homogenization des structures de sous maille, preprint, I.N.R.I.A.Google Scholar
  12. Moffatt, H.K., 1967. Eds. Yaglom and Tatarsky, Nanka, Moscow, p. 139 Papnicolaou, G. and Pironneau, O., 1981. in “Stochastic Nonlinear Systems” Eds. Arnold and Lefever, Springer, p.Google Scholar
  13. Rivlin, 1957. Q. Appl. Math. 15, 212.Google Scholar
  14. Sivashinsky, G.I., 1977. Acta Astraunaut, 4, 1177.Google Scholar
  15. Townsend, A.A., 1956. “The Structure of Turbulent Shear Flow” 2nd Ed. 1976 Cambridge University Press.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Z. S. She
    • 1
  • U. Frisch
    • 2
  • O. Thual
    • 3
  1. 1.Observatoire de MeudonMeudon Principal CedexFrance
  2. 2.C.N.R.S. Observatoire de NiceNice CedexFrance
  3. 3.C.N.R.M.Toulouse CedexFrance

Personalised recommendations