Advertisement

Overlap-free sequences

  • Patrice Séébold
Part V Iterated Morphisms And Infinite Words
Part of the Lecture Notes in Computer Science book series (LNCS, volume 192)

Keywords

Infinite Sequence Finite Alphabet Morse Sequence Biinfinite Sequence Morphism Preserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    F. J. BRANDENBURG: Uniformly growing k-th power-free homoorphisms. Theor. Comput. Science 23 (1983), p.69–82.Google Scholar
  2. (2).
    E. D. FIFE: Binary sequences which contain no BBb. Trans. Amer. Math. Society 261 (1) (1980), p. 115–136.Google Scholar
  3. (3).
    W. GOTTSCHALK-G. HEDLUND: "Topological Dynamics". Amer. Math. Soc. Colloq. Pub. Vol.36 (1955).Google Scholar
  4. (4).
    T. HARJU: Morphisms that avoid overlapping. University of Turku (1983).Google Scholar
  5. (5).
    G. HEDLUND: Remarks of the work of Axel Thue on sequences. Nord. Mat. Tidskr. 16 (1967), p.148–150.Google Scholar
  6. (6).
    J. KARHUMÄKI: On strongly cube-free w-words generated by binary morphisms. Springer Lecture Notes in Comp. Sci. 117 (1981), p.182–189.Google Scholar
  7. (7).
    M. MORSE-G. HEDLUND: Unending chess, symbolic dynamics and a problem in semi-group. Duke Math. J. 11 (1944), p.1–7.Google Scholar
  8. (8).
    J. J. PANSIOT: The MOrse sequence and iterated morphisms. Inf. Process. Letters 12 (1981), p.68–70.Google Scholar
  9. (9).
    A. RESTIVO-S. SALEMI: On weakly square-free words. Inf. Process. Letters — to appear.Google Scholar
  10. (10).
    P. SÉÉBOLD: Morphismes itérés, mot de Morse et mot de Fibonacci. C. R. Acad. Science 295 (1982), p.439–441.Google Scholar
  11. (11).
    A. THUE: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Chris. 1 (1912) p.1–67.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Patrice Séébold
    • 1
    • 2
  1. 1.UER de MathématiquesUniversité Paris VIIFrance
  2. 2.Laboratoire d'Informatique Théorique et Programmation-LA 248 du CNRSPARIS Cedex 05FRANCE

Personalised recommendations