Advertisement

Kth power-free codes

  • Michel Leconte
Part V Iterated Morphisms And Infinite Words
Part of the Lecture Notes in Computer Science book series (LNCS, volume 192)

Abstract

A word is called kth power-free if none of its non-empty factors have the form uk. A morphism is a kth power-free morphism it is preserves the kth power-free words. We present some conditions for some particular morphisms to be kth power-free. As a matter of fact we claim that the framework of the theory of codes is a good framework for these problems and we try to illustrate this.

Keywords

Word Code Prefix Code Circular Code Syntactic Monoid Free Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [BEM79]
    D. Bean, A. Ehrenfeucht, G. McNulty, Avoidable patterns in strings of symbols, Pacific J. of Math. 85, 2 (1979) 261–294.Google Scholar
  2. [Be79]
    J. Berstel, Sur les mots sans carré définis par morphisme, 6th ICALP Symposium, Maurer ed. Lecture Notes in Computer Sciences, 71, Springer (1979) 16–25.Google Scholar
  3. [Be84]
    J. Berstel, Some recent results on squarefree words,( STACCS' 84 ) Technical Report LITP 84–6.Google Scholar
  4. [BPPR79]
    J. Berstel, D. Perrin, J.F. Perrot, A. Restivo, Sur le théorème du défault, Journal of algebra Vol 60 1(1979)169–180.Google Scholar
  5. [BPS84]
    J.Berstel, D.Perrin, M.P. Schutzemberger, The theory of codes Acad. Press. (1984).Google Scholar
  6. [Br83]
    F.J. Brandenburg, Uniformly growing kth power-free homomorphisms, Theor. Comp. Science 23 ( 1983) 69–82.Google Scholar
  7. [Cr82]
    M. Crochemore, Sharp characterizations of square-free morphisms, Theo. Comp. Science 18(1982)221–226.Google Scholar
  8. [Cr82+]
    M. Crochemore, Tests sur les morphismes faiblement sans carré, Proceedings of the combinatorics on words, Cuming ed. Waterloo, Canada 1982.Google Scholar
  9. [ER82]
    A. Ehrenfeucht, G.Rozenberg, Repetitions in homomorphisms and languages, 9th ICALP Symposium Lectures Notes in Comp. Sc. Springer (1982)192–196.Google Scholar
  10. [GGW58]
    S.W. Golomb, B. Gordon, L.R. Welch, Comma-free codes, Can. J. Mat. 10(1958)202–209.Google Scholar
  11. [Ha83]
    T. Harju, Morphisms that avoid overlapping, University of Turku, May 1983.Google Scholar
  12. [He67]
    G. Hedlund, Remarks on the work of Axel Thue on sentences, Nord. Mat. Tidskr. 16(1967).Google Scholar
  13. [Ka83]
    J. Karhumaki, On cubic-free w-words generated by binary morphisms, Discrete applied Math. 5(1983)279–297.Google Scholar
  14. [Le85]
    M. Leconte, A characterization of power-free morphisms, Technical report LITP 84–65, To appear in Theor. Comp. Sc. 1985.Google Scholar
  15. [Lo82]
    Lothaire, Combinatorics on words, Addison Wesley, Reading, Mass. 1982.Google Scholar
  16. [Pi84]
    J.E. Pin, Variétés de langages formels (Dunod, Paris 1984).Google Scholar
  17. [Re73]
    A. Restivo, Codes and aperiodic languages, I. Fachtagunguber Automatentheoric und Formale Sprachen, Lect. Notes in Comp. Sc. 2 Springer 1973,175–181.Google Scholar
  18. [Re75]
    A. Restivo, A combinatorial property of codes having finite synchronisation delay, Theo. Comp. Sc. 1(1975)95–101.Google Scholar
  19. [Se82]
    P. Seebold, Morphismes itérés, mot de Morse et mot de Fibonacci, C.R. Acad. Sci. Paris, T 295(1982)439–441.Google Scholar
  20. [Sp75]
    J.C. Spehner, Quelques constructions et algorithmes relatifs aux sous-monoides d'un monoide libre. Semigroup Forum 9(1975)1–22.Google Scholar
  21. [Th12]
    A. Thue, Uber die gegenseitige lage gleichter teile gewisser zeichenreihen, Norske, Vid. Selsk. Skr. Mat. Nat. Kl Christiana 1(1912)1–67.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Michel Leconte
    • 1
  1. 1.UER de mathématiques, université de Paris VII and Laboratoire d'Informatique Théorique et Pratique CNRS LA 248Cedex 05France

Personalised recommendations