Advertisement

The solution of two star-height problems for regular trees

  • J. P. Braquelaire
  • B. Courcelle
Part III Automata On Infinite Trees
Part of the Lecture Notes in Computer Science book series (LNCS, volume 192)

Abstract

Regular trees can be defined by two types of rational expressions, For these two types we solve the star-height problem i.e. we show how to construct a rational expression of minimal star-height from the minimal graph of the given tree (i.e. the analogous of the minimal deterministic automaton for regular langages). In one case, the minimal star-height is the rank (in the sense of Eggan) of the minimal graph. There corresponds a caracterization of the star-height of a prefix-free regular langage w.r.t rational expressions of a special kind (called determinstic) as the rank of its minimal deterministic automaton considered as a graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Barendregt, The lambda-calculus, studies in logic Vol.103, North-Holland Amsterdam, 1981.Google Scholar
  2. [2]
    S. Bloom, C. Elgot, The existence and construction of free iterative theories. J.Comput.System Sci. 12(1976) pp.305–318.Google Scholar
  3. [3]
    R. Cohen, Star-height of certain families of regular events, J.Comput.System Sci.4(1970) pp.281–297.Google Scholar
  4. [4]
    R. Cohen, Techniques for establishing star-height of regular sets, Math.Systems Theory 5(1971) pp.97–114.Google Scholar
  5. [5]
    R. Cohen, Rank non-increasing transformations on transition graphs, Information and Control 20(1972) pp.93–113.Google Scholar
  6. [6]
    R. Cohen, J. Brzozowski, General properties of star-height of regular events, J.Comput.System Sci.4(1970) pp.260–280.Google Scholar
  7. [7]
    B. Courcelle, A representation of trees by languages, Theor.Comput. Sci.6(1978)255–279 and 7(1978) pp.25–55.Google Scholar
  8. [8]
    B. Courcelle, Fundamental properties of infinite trees, Theor.Comput.Sci. 25(1983) pp.95–169.Google Scholar
  9. [9]
    G. Cousineau, An algebraic definition for control structures, Theor.Comput. Sci.12(1980)175–192.Google Scholar
  10. [10]
    L. Eggan, Transition graphs and the star-height of regular events, Michigan Math.J.10(1963)385–397.Google Scholar
  11. [11]
    S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, New-York, 1974.Google Scholar
  12. [12]
    C. Elgot, Monadic computations and iterative algebraic theories, in: H.E. Rose, ed. Logic Colloquium'73, North-Holland, Amsterdam 1975, pp.175–230.Google Scholar
  13. [13]
    C. Elgot, S. Bloom, R. Tindell, The algebraic structure of rooted trees, J.Comput.System Sci.16(1978)362–399.Google Scholar
  14. [14]
    S. Cinali, Regular trees and the free iterative theory, J.Comput.Sci. 18(1979) pp.228–242.Google Scholar
  15. [15]
    G. Huet, Confluent reductions:abstract properties and applications to term rewriting systems, J.Assoc.Comput.Mach. 27(1980) pp.797–821.Google Scholar
  16. [16]
    G.Jacob, Calcul du rang des arbres infinis reguliers, Proc.CAAP'81, Lec.Notes Comput.Sci. Vol.112, Springer 1981, pp.238–254.Google Scholar
  17. [17]
    R. McNaughton, The loop complexity of pure-group events, Information and Control 11(1967)167–176.Google Scholar
  18. [18]
    R.McNaughton, The loop complexity of regular events, Inform.Sci.1(1969) 305–328.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. P. Braquelaire
    • 1
  • B. Courcelle
    • 1
  1. 1.U.E.R. of Mathematics and InformaticUniversity of Bordeaux ITalence

Personalised recommendations