Logical formulas and four subclasses of ω-regular languages

  • K. Kobayashl
  • M. Takahashi
  • H. Yamasaki
Part II Logic And Automata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 192)


Atomic Formula Regular Language Prenex Normal Form Tile Input Ally Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Buchi, On a decision method in restricted second-order arithmetic, Int. Congress on Logic, Methodology and Philosophy, Stanford, Calif. (1960).Google Scholar
  2. [2]
    S. Ellenberg, Automata, Languages, and Machines, Vol. A, Academic Press, New York (1974).Google Scholar
  3. [3]
    K. Kobayashi, M. Takahashi, and H. Yamasaki, Characterization of ω-regular languages by first-order formulas, Theoretical Computer Science 28 (1984) 315–327.Google Scholar
  4. [4]
    L. Landweber, Decisioon problems for ω-automata, Mathematical Systems Theory 3 (1969) 376–384.Google Scholar
  5. [5]
    L. Staiger and K. Wagner, Automatatheoretische und automatenfreie Characterisierungen topologischer Klasses regularer Folgenmengen, EIK 10 (1974) 379–392.Google Scholar
  6. [6]
    M. Takahashi and H. Yamasaki, A note on ω-regular languages, Theoretical Computer Science 23 (1983) 217–225.Google Scholar
  7. [7]
    W. Thomas, Star-free regular sets of ω-sequences, Information and Control 42 (1979) 148–156.Google Scholar
  8. [8]
    H. Yamasaki, M. Takahashi, and K. Kobayashi, Characterization of ω-regular languages by monadic second-order formulas (Submitted for publication, 1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • K. Kobayashl
    • 1
  • M. Takahashi
    • 1
  • H. Yamasaki
    • 1
  1. 1.Department of Information ScienceTokyo Institute of TechnologyJapan

Personalised recommendations