Star-free ω-languages and first order logic

  • J. E. Pin
Part II Logic And Automata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 192)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.R. Buchi, On a decision method in restricted second order arithmetic, in Logic Methodology and Philosophy of Science, (Proc. 1960 Internat. Congr.), Standford University Press, Stanford, Calif (1960) 1–11.Google Scholar
  2. [2]
    S. Eilenberg, Automata, Languages and Machines, Academic Press, Vol A (1974), Vol B (1976).Google Scholar
  3. [3]
    R. Ladner, Application of model-theoretic games to discrete linear orders and finite automata, Information and Control 33, (1977), 281–303.Google Scholar
  4. [4]
    R. Mc Naughton, Testing and generating infinite sequences by a finite automaton Information and Control 9, (1966), 521–530.Google Scholar
  5. [5]
    R. Mc Naughton and S. Pappert, Counter-free automata, MIT Press (1971).Google Scholar
  6. [6]
    D. Perrin, this volume.Google Scholar
  7. [7]
    D. Perrin, Recent results on automata and infinite words, to appear.Google Scholar
  8. [8]
    D. Perrin and J.E. Pin, First order logic and star-free sets, to appear.Google Scholar
  9. [9]
    J.E. Pin, Variétés de langages formels. Masson (1984).Google Scholar
  10. [10]
    W. Thomas, Star-free regular sets of ω-sequences, Information and Control 42, (1979) 148–156.Google Scholar
  11. [11]
    W. Thomas, A Combinatorial approach to the theory of ω-automata, Information and Control 48, (1981) 261–283.Google Scholar
  12. [12]
    W. Thomas, Classifying regular events in symbolic logic, J. Comput. System Science 25, (1982), 360–376.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. E. Pin
    • 1
  1. 1.CNRSParis

Personalised recommendations