Coherence of states in trapped ions

  • Th. Sauter
  • W. Neuhauser
  • P. E. Toschek
Invited Lectures Part IV. Laser Cooling and Trapping
Part of the Lecture Notes in Physics book series (LNP, volume 229)


The formation of Hertzian coherence of equal-parity states in trapped ions by the application of double-resonance interaction schemes has produced ultra-narrow resonances with quality factors on the order of 1011. Optical coherences of equal-parity states may be responsible for the identification of finer details of the excitation spectrum of single trapped ions at weel as for some novel contributions to their mechanical interaction with light. These effects seem tob e undetectable in gases since collisions are present adn the interaction time is limited.


Raman Resonance Optical Cool Sideband Transition Coherence Formation Resonance Fluor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, e.g. P.E. Toschek, Tendances actuelles en physique atomique, Les Houches, Session XXXVIII, G. Grynberg and R. Stora, eds., North Holland 1984, p. 381Google Scholar
  2. 2.
    R. Van Dyck, Jr., P. Ekstrom, and H. Dehmelt, Phys. Rev. Lett. 38, 310 (1977)Google Scholar
  3. 3.
    W. Neuhauser, M. Hohenstatt, P.E. Toschek, and H.G. Dehmelt, Phys. Rev. Lett. 41 233 (1978)Google Scholar
  4. 4.
    D.J. Wineland, R.E. Drullinger, and F.L. Walls, Phys. Rev. Lett. 40, 1639 (1878)Google Scholar
  5. 5.
    W. Neuhauser, M. Hohenstatt, P.E. Toschek, and H. Dehmelt, Phys. Rev. A22, 1137 (1980)Google Scholar
  6. 6.
    R. Blatt, H. Schnatz and G. Worth, Phys. Rev. Lett. 48, 1601 (1982)Google Scholar
  7. 7.
    D.J. Wineland, J.J. Bollinger, and Wayne M. Itano, Phys. Rev. Lett. 50, 628 (1983)Google Scholar
  8. 8.
    F.M. Penning, Physica 3, 873 (1936)Google Scholar
  9. 9.
    W. Paul, O. Osberghaus, and E. Fischer, Forschungsbor. d. Wirtsch.-u. Verkehrsmin. NRW. Nr. 415 (1958)Google Scholar
  10. 10.
    E. Fischer, Z. Phys. 156, 1 (1959).-H.A. Schuessler, E.N. Fortson, and H.G. Dehmelt, Phys. Rev. 187, 5 (1969)Google Scholar
  11. 11.
    R.F. Wuerker, H.M. Goldenberg, and R.V. Langmuir, J. Appl. Phys. 30, 342 (1959)Google Scholar
  12. 12.
    J.G. Bergquist, R.L. Barger, and D.J. Glaze, Laser Spectroscopy IV, Rottach-Egern, H. Walther and K.W. Rothe, eds., Springer-Verlag, Heidelberg, 1979, p. 120Google Scholar
  13. 13.
    P.E. Toschek and W. Neuhauser, Atomic Physics 7, D. Kleppner and F.M. Pipkin, eds., Plenum, New York, 1981, p. 529Google Scholar
  14. 14.
    B.J. Feldman and M.S. Feld, Phys. Rev. A5, 899 (1972)Google Scholar
  15. 15.
    L. Roso, R. Corbalán, G. Orriols, R. Vilaseca, and E. Arimondo, Appl. Phys. B31, 115 (1983)Google Scholar
  16. 16.
    W. Heitler, The quantum theory of radiation, Clarendon, Oxford, 1954.-C. Cohen-Tannoudji, Aux frontiéres de la spectroscopie laser, Les Houches, Session XXXVII, R. Balian, S. Haroche andS. Liberman, eds., North Holland, Amsterdam, 1977, p. 3Google Scholar
  17. 17.
    D.J. Wineland and W.M. Itano, Phys. Rev. 20, 1521 (1979)Google Scholar
  18. 18.
    R.E. Drullinger, D.J. Wineland, and J.C. Bergquist, Appl. Phys. 22, 365 (1980)Google Scholar
  19. 19.
    W. Neuhauser, M. Hohenstatt, P.E. Toschek, and H. Dehmelt, Spectral Line Shapes, B. Wende, ed., W. de Gruyter, Berlin 1981, p. 1045Google Scholar
  20. 20.
    D.J. Wineland and W.M. Itano, Phys. Lett. 82A, 75 (1981)Google Scholar
  21. 21.
    J. Javanainen, this volumeGoogle Scholar
  22. 22.
    A. Kastler, J. de Physique 11, 255 (1950)Google Scholar
  23. 23.
    D.E. Pritchard, Phys. Rev. Lett. 51, 1336 (1983)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Th. Sauter
    • 1
  • W. Neuhauser
    • 1
  • P. E. Toschek
    • 1
  1. 1.Institut für ExperimentalphysikUniversität HamburgHamburg 36Germany

Personalised recommendations