Advertisement

Studies of multiquantum processes in atoms

  • Charles K. Rhodes
Invited Lecturers Part II: Multiphoton Ionization
Part of the Lecture Notes in Physics book series (LNP, volume 229)

Abstract

From an analysis of multiauantum processes in atoms, which includes information derived from ion charge state distributions, photoelectron spectra, and photon spectra, and involving the atomic number (Z), intensity, frequency, and polarization dependencies, an approximate description of the electronic motions involved in these processes has emerged. The data strongly indicate that an organized motion of an entire shell, or a major fraction thereof, is directly involved in the nonlinear coupling. With this picture, the outer atomic subshells are envisaged as being driven in coherent oscillation by the intense ultraviolet wave. An immediate consequence of this motion is an increase in multiphoton coupling resulting directly from the larger magnitude of the effective charge involved in the interaction. In this way, a multielectron atom undergoing a nonlinear interaction responds in a fundamentally different fashion from that of a single electron counterpart. The strong highly nonlinear coupling which develops between the radiation field and the atom can result in the transfer of energy by a direct intra-atomic process to inner-shell excitations. These coherent atomic motions, which can be related to fast atom-atom encounters (> 10 MeV/amu), should enable the selective excitation of atomic inner-shell states in the KeV range to be produced by intense irradiation of atoms at ultraviolet wavelengths.

Keywords

Nonlinear Coupling Atomic Core Coherent Oscillation Outer Electron Ultraviolet Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. S. Luk, H. Pummer, K. Boyer, M. Shahidi, H. Egger, and C. K. Rhodes, Phys. Rev. Lett. 51, 110 (1983).Google Scholar
  2. 2.
    T. S. Luk, H. Pummer, K. Boyer, M. Shahidi, H. Egger, and C. K. Rhodes, Excimer Lasers-1983, AIP Conference Proceedings No. 100, edited bv C. K. Rhodes, H. Egger, and H. Pummer (American Institute of Physics, New York, 1983) p. 341.Google Scholar
  3. 3.
    A. L'Huillier, L-A. Lompré, G. Mainfray, and C. Manus, in Laser Techniques in the Extreme Ultraviolet, AIP Conference Proceedings No. 119, edited by S. E. Harris and B. Lucatorto (AIP, New York, 1984) p. 79.Google Scholar
  4. 4.
    A. L'Huillier, L-A. Lompré, G. Mainfray, and C. Manus, Phys. Rev. Lett. 48, 1814 (1982).Google Scholar
  5. 5.
    A. L'Huillier, L-A. Lompré, G. Mainfray, and C. Manus, Phys. Rev. A27, 2503 (1983).Google Scholar
  6. 6.
    U. Johann, T. S. Luk, H. Egger, H. Pummer, and C. K. Rhodes, “Evidence for Atomic Inner-Shell Excitation in Xenon from Electron Spectra Produced by Collision-Free Multiphoton Processes at 193 nm,” Conference on Lasers and Electro-Optics '85, Baltimore, Maryland, to be published.Google Scholar
  7. 7.
    T. S. Luk, U. Johann, H. Egger, H. Pummer, and C. K. Rhodes, “Collision-Free Multiple Ionization of Atoms and Molecules at 193 nm,” to be published.Google Scholar
  8. 8.
    P. Lambropoulos in Advances in Atomic and Molecular Physics, Vol. 12, edited by D. R. Bates and B. Bederson Academic Press, New York, 1976) p. 87.Google Scholar
  9. 9.
    H. B. Bebb and A. Sold, Phys. Rev. 143, 1 (1966).Google Scholar
  10. 10.
    Y. Gontier and M. Trahin, J. Phys. B13, 4384 (1980); Y. Gontier and M. Trahin, Phys. Rev. 172, 83 (1958).Google Scholar
  11. 11.
    H. R. Reiss, Phys. Rev. A1, 803 (1970); ibid., Phvs. Rev. Lett. 25, 1149 (1970); ibid., Phys. Rev. D4, 3533 (1971); ibid., Phys. Rev. A6, 817 (1972).Google Scholar
  12. 12.
    H. S. Brandi and L. Davidovich, J. Phys. B12, L615 (1979).Google Scholar
  13. 13.
    L. V. Keldvsh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964)[Sov. Phys. — JETP 20, 1307 (1965) ].Google Scholar
  14. 14.
    C. K. Rhodes, “Studies of Collision-Free Nonlinear Processes in the Ultraviolet Range,” in Proceedings of the International Conference on Multiphoton Processes III, Crete, Greece, September 5–12, 8, edited by P.. Lambropoulos and S. J. Smith (Springer-Verlag, Berlin, in press).Google Scholar
  15. 15.
    N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Oxford University Press, London, 1965), H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Vol. 1 (Oxford University Press, London, 1969); N. M. Kroll and K. M. Watson, Phys. Rev. A8, 804 (1973).Google Scholar
  16. 16.
    James H. Scofield, Phys. Rev. A18, 963 (1978).Google Scholar
  17. 17.
    L. B. Golden, P. H. Sampson, and K. Omidvar, J. Phys. B11, 3235 (1978).Google Scholar
  18. 18.
    L. B. Golden, P. H. Sampson, and K. Omidvar, J. Phys. B13, 2645 (1980).Google Scholar
  19. 19.
    D. C. Griffen, C. Bottcher, M. S. Pindzola, S. M. Younger, D. C. Gregory, and P. H. Crandall, Phys. Rev. A29, 1729 (1984); D. C. Gregory and P. H. Crandall, Phys. Rev. A27 2338 (1983 ); C.Achenbac h, A.MUlle r, E.Salzbor n,and R. Becker, J. Phys. B17, 1405 (1984).Google Scholar
  20. 20.
    K. Boyer and C. K. Rhodes, “Atomic Inner-Shell Excitation Induced by Coherent Motion of Outer-Shell Electrons,” to be published.Google Scholar
  21. 21.
    J. S. Briggs and K. Taulbjerg in Structure and Collisions of Ions and Atoms, edited by I. A. Sellin (Springer-Verlag, Berlin, 1978, p. 105.Google Scholar
  22. 22.
    H. A. Bethe, Ann. Phys. 5, 325 (1930).Google Scholar
  23. 23.
    T. P. Hughes, Plasmas and Laser Light (John Wiley and Sons, New York, 1975).Google Scholar
  24. 24.
    P. Kruit and F. H. Read, J. Phys. E16, 373 (1983).Google Scholar
  25. 25.
    H. G. Muller and A. Tip, Phys. Rev. A30, 3039 (1984).Google Scholar
  26. 26.
    S. Southworth, U. Becker, C. M. Truesdale, P. H. Kobrin, D. W. Lindle, S. Owaki, and D. A. Shirléy, Phys. Rev. A28, 261 (1983).Google Scholar
  27. 27.
    L. O. Werme, T. Bergmark, and K. Siegbahn, Phys. Scr. 6, 141 (1972).Google Scholar
  28. 28.
    U. Johann, private communication.Google Scholar
  29. 29.
    T. Srinivasan, H. Egger, T. S. Luk, H. Pummer, and C. K. Rhodes in Laser Spectroscopy VI, edited by H. P. Weber and W. Lüthy (Springer-Verlag, Berlin, 1983) p. 385.Google Scholar
  30. 30.
    H. Egger, T. S. Luk, W. Müller, H. Pummer, and C. K. Rhodes in Laser Techniques in the Extreme Ultraviolet, AIP Conference Proceeding No.119, edited by S. E. Harris and T. B. Lucatorto (AIP, New York, 1984) p. 64; H. Pummer, H. Egger, T. S. Luk, and C. K. Rhodes, SPIE 461, 53 (1984).Google Scholar
  31. 31.
    K. Boyer, H. Egger, T. S. Luk, H. Pummer, and C. K. Rhodes, J. Opt. Soc. Am. B1, 3 (1984).Google Scholar
  32. 32.
    W. Müller, T. Srinivasan, H. Egger, T. S. Luk, H. Pummer, and C. K. Rhodes, “Properties of Stimulated Emission Below 100 nm in Krypton,” to be published.Google Scholar
  33. 33.
    K. Codling and R. P. Madden, J. Res. Natl. Bur. Std. 76A, 1 (1972).Google Scholar
  34. 34.
    K. Codling and R. P. Madden, Phys. Rev. A4, 2261 (1971).Google Scholar
  35. 35.
    D. L. Ederer, Phys. Rev. A4, 2263 (1971).Google Scholar
  36. 36.
    M. Boulay and P. Marchand, Can. J. Phys. 60, 855 (1982).Google Scholar
  37. 37.
    J. A. Baxter, P. Mitchell, and J. Comer, J. Phvs. B15, 1105 (1982).Google Scholar
  38. 38.
    Beam-Foil Spectroscopy, Vol. 1 and Vol. 2, edited by I. A. Sellin and D. J. Pegg (Plenum Press, New York, 1976).Google Scholar
  39. 39.
    U. Littmark and J. F. Ziegler, Handbook of Range Distributions for Energetic Ions in All Elements, Vol. 6 (Pergamon Press, New York, 1980)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Charles K. Rhodes
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at ChicagoChicago

Personalised recommendations