Advertisement

Effect of water on the properties of epoxy matrix and composite

  • A. Apicella
  • L. Nicolais
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 72)

Abstract

The complex sorption behavior of the water in amine-epoxy thermosets is discussed and related to depression of the mechanical properties. The hypothesized sorption modes and the corresponding mechanisms of plasticization are discussed on the basis of experimental vapor and liquid sorption tests, differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and dynamic mechanical analysis. In particular, two different types of epoxy materials have been chosen: low-performance systems of diglycidyl ether of bisphenol-A (DGEBA) cured with linear amines, and high-performance formulations based on aromatic amine-cured tetraglycidyldiamino diphenylmethane (TGDDM) which are commonly used as matrices for carbon fiber composites.

Three modes of moisture sorption are assumed: dilution of the free volume in the network, hydrogen bonding involving hydrophilic groups of the polymer and adsorption onto the surfaces of “holes” which define the excess free volume of the glassy structure and are induced hygrothermally. The DGEBA systems are described to have no appreciable sorption via hydrogen bonding, but rather most of the moisture absorbed is through dilution of the free volume and adsorption in the “holes”. On the other hand, the TGDDM systems are described to absorb more moisture through significant hydrogen bonding and dilution of the free volume. High plasticization, evident as Tg depressions of 30 to 80 °C, are possible and experimentally observed especially for the stiffer TGDDM resins. Relationships derived from the free volume theory or the classical thermodynamic treatment may be used to describe the compositional dependence of the Tg in miscible blends.

Keywords

Free Volume Epoxy Matrix Moisture Sorption Epoxy System Sorbed Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

4 References

  1. 1.
    Browning, C. E.: Polym. Eng. Sci., 18, 16 (1978)CrossRefGoogle Scholar
  2. 2.
    Morgan, R. J., Mones, E. T., Steele, W. J.: Polymer, 20, 315 (1982)Google Scholar
  3. 3.
    Morgan, R. J., O'Neal, J.: J. Mater. Sci., 12, 1966 (1977)CrossRefGoogle Scholar
  4. 4.
    Apicella, A., Nicolais, L.: Ind. Eng. Chem. Prod. Res. Dev., 20, 138 (1981)CrossRefGoogle Scholar
  5. 5.
    Chi-Hung, Springer, G. S.: J. Compos. Mater., 10, 2 (1976)CrossRefGoogle Scholar
  6. 6.
    Apicella, A., Nicolais, L.: Ind. Eng. Chem. Prod. Res. Dev., 23, 288 (1984)CrossRefGoogle Scholar
  7. 7.
    Loos, A. C., Springer, G. S.: J. Compos. Mater., 13, 17 (1979)CrossRefGoogle Scholar
  8. 8.
    Pogany, G. A.: Polymer, 17, 690 (1976)CrossRefGoogle Scholar
  9. 9.
    McKague, E. L., Halkias, J. E., Reinolds, J. D.: J. Compos. Mater., 9, 2 (1975)CrossRefGoogle Scholar
  10. 10.
    Apicella, A., Nicolais, L., Astarita, G., Drioli, E.: Polymer, 20, 9 (1979)CrossRefGoogle Scholar
  11. 11.
    Apicella, A., Nicolais, L., Carfagna, C., Notaristefani, D. de: C. Voto, Proceedings of the 27th National SAMPF Meeting, San Diego USA, 1982, “The Effect of the prepolymer composition on the environmental aging of epoxy based resins”Google Scholar
  12. 12.
    Apicella, A., Nicolais, L., Halpin, J. C.: Proceedings of the 28th National SAMPE Meeting, Anaheim, USA, 1983, “The role of the processing chemorheology on the environmental ageing behaviour of high performance epoxy matrices”Google Scholar
  13. 13.
    Apicella, A.: “Influence of chemorheology on the epoxy resin properties”, to appear in “Development of reinforced plastics-5, Ed. Pritchard, Appl. Sci. Publishers LTD.Google Scholar
  14. 14.
    Gillham, J. K.: Polym. Eng. Sci., 19, 676 (1979)CrossRefGoogle Scholar
  15. 15.
    Lewis, A. F., Doyle, M. J., Gillham, J. K.: Polym. Eng. Sci., 19, 687 (1979)CrossRefGoogle Scholar
  16. 16.
    Mijovic, J., Tsai, L.: Polymer, 22, 902 (1981)CrossRefGoogle Scholar
  17. 17.
    Lunak, S., Vladyka, J., Dusek, K.: Polymer, 19, 931 (1978)CrossRefGoogle Scholar
  18. 18.
    Dušek, K., Bleha, M., Lunak, S.: J. Polym. Sci. Polym. Chem. Ed., 15, 2393 (1977)CrossRefGoogle Scholar
  19. 19.
    Dušek, K., Ilavsky, M.: Colloid Polym. Sci., 28, 605 (1980)Google Scholar
  20. 20.
    Schneider, N. S., Sprouse, J. F., Hagnouer, G. L., Gillham, J. H.: Polym. Eng. Sci., 19, 304 (1979)CrossRefGoogle Scholar
  21. 21.
    Morgan, R. J., O'Neal, J., Miller, D. B.: J. Mater. Sci., 14, 109 (1979)CrossRefGoogle Scholar
  22. 22.
    Moy, P., Karasz, F. E.: Polym. Eng. Sci., 20, 315 (1980)CrossRefGoogle Scholar
  23. 23.
    Banks, L., Ellis, B.: Polymer Bull., 1, 377 (1979)CrossRefGoogle Scholar
  24. 24.
    Anton, M. K., Koening, J. L., Serafini, T.: J. Polym. Sci., Polym. Phys. Edn., 19, 1567 (1981)CrossRefGoogle Scholar
  25. 25.
    Ellis, T. S., Karasz, F. E.: Polymer, 25, 664 (1984)CrossRefGoogle Scholar
  26. 26.
    Ellis, T. S., Karasz, F. E., Brinke, G. ten: J. Appl. Polym. Sci., 28, 23 (1983)CrossRefGoogle Scholar
  27. 27.
    Brinke, G. ten, Karasz, F. E., Ellis, T. S.: Makromolecules, 16, 244 (1983)CrossRefGoogle Scholar
  28. 28.
    Kelly, F. N., Bueche, F.: J. Polym. Sci., 50, 549 (1961)CrossRefGoogle Scholar
  29. 29.
    Peyser, P., Bascom, W. D.: J. Mater. Sci., 16, 75 (1981)CrossRefGoogle Scholar
  30. 30.
    Morgan, R. J., O'Neal, J. E.: Polym.-Plast. Tech. Eng., 10, 49 (1978)CrossRefGoogle Scholar
  31. 31.
    McKague, E. L., Reynolds, J. D., Halkais, J.: J. Appl. Polym. Sci., 22, 1643 (1978)CrossRefGoogle Scholar
  32. 32.
    Apicella, A., Nicolais, L., Cataldis, C. de: “Characterization of the morphological fine structure of commercial thermosetting resins through hygrothermal experiments”, Advance in Polymer Science vol. 66, Kausch Ed., Springer-Verlag 1984Google Scholar
  33. 33.
    Apicella, A., Tessieri, R., Cataldis, C. de: J. Memb. Sci., 18, 211 (1984)CrossRefGoogle Scholar
  34. 34.
    Apicella, A., Nicolais, L., Astarita, E., Drioli, E.: Polymer, 22, 1064 (1981)CrossRefGoogle Scholar
  35. 35.
    Apicella, A., Nicolais, L., Astarita, G., Drioli, E.: Polym. Eng. Sci., 21, 18 (1981)CrossRefGoogle Scholar
  36. 36.
    Carfagna, C., Apicella, A.: J. Appl. Polym. Sci., 28, 2881 (1983)CrossRefGoogle Scholar
  37. 37.
    Delasi, R., Whitside, J. B.: ASTM STP 658, J. R. Vinson Ed., 1978, p. 2Google Scholar
  38. 38.
    Zimm, B. H., Lundenberg, J.: J. Chem. Wash., 60, 425 (1956)Google Scholar
  39. 39.
    Mikols, W. J., Seferis, J. C., Apicella, A., Nicolais, L.: Polym. Composites, 3, 118 (1982)CrossRefGoogle Scholar
  40. 40.
    Carfagna, C., Apicella, A., Nicolais, L.: J. Appl. Polym. Sci., 27, 105 (1982)CrossRefGoogle Scholar
  41. 41.
    Michaels, A. S., Vieth, W. R., Barrie, J. A.: J. Appl. Phys., 24, 1 (1963)CrossRefGoogle Scholar
  42. 42.
    Meares, P.: Trans. Farad. Soc., 53, 101 (1957)CrossRefGoogle Scholar
  43. 43.
    Vieth, W. R., Howell, J. H., Hoseih, J. H.: J. Memb. Sci., 1, 177 (1977)CrossRefGoogle Scholar
  44. 44.
    Johari, G. P.: Phylos. Mag., 35, 1077 (1977)CrossRefGoogle Scholar
  45. 45.
    Keenan, J. D., Seferis, J. C., Quinlivan, J. T.: J. Appl. Polym. Sci., 24, 2375 (1979)CrossRefGoogle Scholar
  46. 46.
    Apicella, A., Nicolais, L., Mikols, J. K., Seferis, J. J.: “Sorption mechanisms in glassy thermosets” in “Interrelations between processing structure and properties of polymeric materials”, J. C. Seferis and P. S. Theocaris (Eds.), Elsevier 1984Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • A. Apicella
    • 1
  • L. Nicolais
    • 1
  1. 1.Materials and Production Engineering DepartmentUniversity of NaplesItaly

Personalised recommendations