Advertisement

Swelling equilibrium studies of elastomeric network structures

  • J. P. Queslel
  • J. E. Mark
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 71)

Abstract

Until recently, interpretation of swelling equilibrium experiments rested on the Flory-Rehner equation developed in 1943 for networks which deform affinely. The relationship made possible at least the ranking of series of networks of the same polymer, according to their cross-link densities. However, the theory does not explain the important fact (first observed by Gee in 1965) that there is a maximum in the dependence of λ ln (a 1 c /a 1 u ) on λ (where λ is the isotropic deformation v 2 −1/3 , v2 the volume fraction of polymer in the polymer-solvent system, and a 1 u and a 1 c the solvent activities respectively in uncross-linked and cross-linked polymers). Decisive progress in this field has been achieved by the formulation of a molecular theory of real networks by Flory and Erman in 1979. The present paper reviews the main theoretical advances concerning swelling and swelling equilibrium, and describes useful methods for characterizing both model networks (of controlled structure) and networks in which the cross linking is highly random and essentially uncontrolled.

Keywords

Primary Chain Extension Ratio Effective Chain Elastic Free Energy Cycle Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Huggins, M. L.: J. Chem. Phys. 9, 440 (1941)Google Scholar
  2. 2.
    Flory, P. J.: J. Chem. Phys. 10, 51 (1942)Google Scholar
  3. 3.
    Flory, P. J.: Principles of Polymer Chemistry, Chapters 12 and 13, Cornell University Press, Ithaca, New York (1953)Google Scholar
  4. 4.
    Flory, P. J., Rehner, J.: J. Chem. Phys. 11, 512 (1943)Google Scholar
  5. 5.
    Flory, P. J., Rehner, J.: J. Chem. Phys. 11, 521 (1943)Google Scholar
  6. 6.
    Flory, P. J.: Chem. Rev. 35, 51 (1944)Google Scholar
  7. 7.
    Moore, C. G., Watson, W. F.: J. Polym. Sci. 19, 237 (1956)Google Scholar
  8. 8.
    Flory, P. J.: J. Chem. Phys. 66, 5720 (1977)Google Scholar
  9. 9.
    Flory, P. J., Erman, B.: Macromolecules 15, 800 (1982)Google Scholar
  10. 10.
    Flory, P. J.: Macromolecules 12, 119 (1979)Google Scholar
  11. 11.
    Brotzman, R. W., Eichinger, B. E.: Macromolecules 15, 531 (1982)Google Scholar
  12. 12.
    Brotzman, R. W., Eichinger, B. E.: Macromolecules 16, 1131 (1983)Google Scholar
  13. 13.
    Gottlieb, M., Gaylord, R. J.: Macromolecules 17, 2024 (1984)Google Scholar
  14. 14.
    Queslel, J. P., Mark, J. E.: Polymer Bull. 10, 119 (1983)Google Scholar
  15. 15.
    Orwoll, R. A.: Rubber Chem. Technol. 50, 451 (1977)Google Scholar
  16. 16.
    Eichinger, B. E., Flory, P. J.: Trans. Farad. Soc. 64, 2035, 2053, 2061, 2066 (1968)Google Scholar
  17. 17.
    Flory, P. J., Tatara, Y. I.: J. Polym. Sci., Polym. Phys. Ed. 13, 683 (1975)Google Scholar
  18. 18.
    Yen, L. Y., Eichinger, B. E.: J. Polym. Sci., Polym. Phys. Ed. 16, 117 (1978)Google Scholar
  19. 19.
    James, H. M., Guth, E.: J. Chem. Phys. 15, 669 (1947)Google Scholar
  20. 20.
    Flory, P. J.: Proc. R. Soc. Lond. A 351, 351 (1976)Google Scholar
  21. 21.
    Queslel, J. P., Mark, J. E.: Adv. Polym. Sci. 65, 135 (1984)Google Scholar
  22. 22.
    Erman, B., Flory, P. J.: J. Polym. Sci., Polym. Phys. Ed. 16, 1115 (1978)Google Scholar
  23. 23.
    Pak, H., Flory, P. J.: J. Polym. Sci., Polym. Phys. Ed. 17, 1845 (1979)Google Scholar
  24. 24.
    Erman, B.: J. Polym. Sci., Polym. Phys. Ed. 19, 829 (1981)Google Scholar
  25. 25.
    Erman, B., Flory, P. J.: Macromolecules 15, 806 (1982)Google Scholar
  26. 26.
    Erman, B.: J. Polym. Sci., Polym. Phys. Ed. 21, 893 (1983)Google Scholar
  27. 27.
    Scanlan, J.: J. Polym. Sci. 43, 501 (1960); L. C. Case, J. Polym. Sci. 45, 397 (1960)Google Scholar
  28. 28a.
    Pearson, D. S., Graessley, W. W.: Macromolecules 11, 528 (1978); b. P. J. Flory, Macromolecules 15, 99 (1982)Google Scholar
  29. 29.
    Mark, J. E.: Rubber Chem. Technol. 54, 809 (1981); Mark, J. E.: Adv. Polym. Sci. 44, 1 (1982)Google Scholar
  30. 30.
    Andrady, A. L., Llorente, M. A., Sharaf, M. A., Rahalkar, R. R., Mark, J. E., Sullivan, J. L., Yu, C. U., Falender, J. R.: J. Appl. Polym. Sci. 26, 1829 (1981)Google Scholar
  31. 31.
    Leung, Y. K., Eichinger, B. E.: results to be publishedGoogle Scholar
  32. 32.
    Erman, B., Flory, P. J.: Macromolecules 16, 1607 (1983)Google Scholar
  33. 33.
    Flory, P. J., Rehner, J.: J. Chem. Phys. 12, 412 (1944)Google Scholar
  34. 34.
    Gee, G.: Trans. Farad. Soc. 42, 33 (1946)Google Scholar
  35. 35.
    Treloar, L. R. G.: The Physics of Rubber Elasticity, Chapter 7, 3rd Ed., Clarendon Press, Oxford (1975)Google Scholar
  36. 36.
    Mooney, M.: J. Appl. Phys. 11, 582 (1940)Google Scholar
  37. 37.
    Rivlin, R. S.: Phil. Trans. R. Soc. A 241, 379 (1948)Google Scholar
  38. 38.
    van der Hoff, B. M. E.: Polymer 6, 397 (1965)Google Scholar
  39. 39.
    Mullins, L.: J. Appl. Polym. Sci. 2, 257 (1959)Google Scholar
  40. 40.
    Booth, C., Gee, G., Holden, G., Williamson, G. R.: Polymer 5, 343 (1964)Google Scholar
  41. 41.
    Allen, G., Kirkham, M. J., Padget, J., Price, C.: Trans. Farad. Soc. 49, 1495 (1971)Google Scholar
  42. 42.
    Gee, G., Herbert, J. B. M., Roberts, R. C.: Polymer 6, 541 (1965)Google Scholar
  43. 43.
    Yen, L. Y., Eichinger, B. E.: J. Polym. Sci., Polym. Phys. Ed. 16, 121 (1978)Google Scholar
  44. 44.
    Graessley, W. W.: Adv. Polym. Sci. 46, 67 (1982)Google Scholar
  45. 45.
    Marrucci, G.: Macromolecules 14, 434 (1981)Google Scholar
  46. 46.
    de Gennes, P. G.: Scaling Concepts in Polymer Physics, Chapter 1, Cornell University Press, Ithaca, London (1979)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. P. Queslel
    • 1
  • J. E. Mark
    • 1
  1. 1.Department of Chemistry and the Polymer Research CenterThe University of CincinnatiCincinnatiUSA

Personalised recommendations