Stochastic quantization and gravity

  • Helmut Rumpf
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 226)


Quantum Gravity Gravitational Field Minkowski Space Langevin Equation Landau Gauge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Nelson, Phys. Rev. 150 (1966) 1079.CrossRefGoogle Scholar
  2. [2]
    See e.g. N.G. van Kampen, Stochastic Processes in Physics and Chemistry, North Holland 1981.Google Scholar
  3. [3]
    E. Seiler, Stochastic Quantization and Gauge Fixing in Gauge Theories, Lectures given at 23. Internationale Universitätswochen für Kernphysik, Schladming, Austria, 1984.Google Scholar
  4. [4]
    F. Guerra and P. Ruggiero, Phys. Rev. Lett. 31 (1973) 1022.CrossRefGoogle Scholar
  5. [5]
    F. Guerra and M.I. Loffredo, Lett. Nuovo Cim. 27 (1980) 41.Google Scholar
  6. [6]
    S.C. Lim, Lett. Math. Phys. 7 (1983) 469.CrossRefGoogle Scholar
  7. [7]
    S.C. Lim, Phys. Lett. 135B (1984) 417.Google Scholar
  8. [8]
    F. Guerra and M.I. Loffredo, Lett. Nuovo Cim. 30 (1981) 81.Google Scholar
  9. [9]
    N. Cufaro Petroni, Ph. Gueret, J.-P. Vigier, Nuovo Cim. 81B (1984) 243.Google Scholar
  10. [10]
    R. Kubo, Five-Dimensional Formulation of Quantum Field Theory with an Invariant Parameter, Hiroshima University preprint RRK 84-11.Google Scholar
  11. [11]
    G. Parisi and Wu Yong-Shi, Sci. Sinica 24 (1981) 483.Google Scholar
  12. [12]
    E. Gozzi, Phys. Rev. D28 (1983) 1922.Google Scholar
  13. [13]
    R. Kirschner, Stochastic Quantization and Supersymmetry, Seminar given at 23. Internationale Universitätswochen für Kernphysik, Schladming, Austria, 1984.Google Scholar
  14. [14]
    H. Nicolai, Phys. Lett. 89B (1980) 341; Nucl. Phys. B176 (1980) 419.Google Scholar
  15. [15]
    J.D. Breit, S. Gupta, A. Zaks, Nucl. Phys. B233 (1984) 61.CrossRefGoogle Scholar
  16. [16]
    V. De Alfaro, S. Fubini, G. Furlan, Phys. Lett. 105B (1981) 462.Google Scholar
  17. [17]
    E. Gozzi, The new functional approach to field theory by De AlfaroFubini and its connection to Parisi-Wu stochastic quantization, New York City College preprint HEP-83/7.Google Scholar
  18. [18]
    D. Callaway, Phys. Lett. 145B (1984) 363.Google Scholar
  19. [19]
    M. Namiki, I. Ohba, K. Okano and Y. Yamanaka, Progr. Theor. Phys. 69 (1983) 1580.Google Scholar
  20. [20]
    P. van Nieuwenhuizen, Nucl. Phys. B60 (1973) 478.CrossRefGoogle Scholar
  21. [21]
    G.W. Gibbons, S.W. Hawking, M.J. Perry, Nucl. Phys. B138 (1978) 141.CrossRefGoogle Scholar
  22. [22]
    G.T. Horowitz, Quantum cosmology with a positive definite action, UCSB preprint TH-3 1984.Google Scholar
  23. [23]
    H. Hüffel and H. Rumpf, Stochastic quantization in Minkowski space, Phys. Lett. B (1884), to appear.Google Scholar
  24. [24]
    H. Hüffel and H. Rumpf, Stochastic quantization and gauge-fixing of the linearized gravitational field, University of Vienna preprint UWThPh-1984-30.Google Scholar
  25. [25]
    H. van Dam, M. Veltman, Nucl. Phys. B22 (1970) 397.Google Scholar
  26. [26]
    H. Rumpf, Phys. Rev. D28 (1983) 2946, and references cited therein.Google Scholar
  27. [27]
    S.W. Hawking, Acausal propagation in quantum gravity, in Quantum Gravity 2, (eds. C.J. Isham, R. Penrose and D.W. Sciama), Clarendon Press, Oxford (1981).Google Scholar
  28. [28]
    G. Parisi, Phys. Lett. 131B (1983) 393.Google Scholar
  29. [29]
    E. Gozzi, Langevin simulation in Minkowski space, Max-PlanckInstitute Munich preprint MPI-PAE/PTh 73/84.Google Scholar
  30. [30]
    D. Zwanziger, Nucl. Phys. B192 (1981) 259.CrossRefGoogle Scholar
  31. [31]
    B.S. De Witt, Quantum gravity: the new synthesis, in General Relativity-an Einstein Centenary survey (eds. S.W. Hawking and W. Israel), Cambridge University Press 1979.Google Scholar
  32. [32]
    J. Sakamoto, Progr. Theor. Phys. 70 (1983) 1424.Google Scholar
  33. [33]
    M. Namiki, I. Ohba and K. Okano, Stochastic Quantization of Constrained Systems-General Theory and Nonlinear Sigma Model, Waseda University (Tokyo) preprint WU-HEP-84-3.Google Scholar
  34. [34]
    W. Grimus and H. Hüffel, Z. Phys. C18 (1983) 129.Google Scholar
  35. [35]
    T. Fukai and K. Okano, Stochastic quantization of linearized Euclidean gravity and no-ghost Feynman rules, Waseda University (Tokyo) preprint WU-HEP-8.Google Scholar
  36. [36]
    A. Burnel, Phys. Rev. D29 (1984) 2344.Google Scholar
  37. [37]
    J. Alfaro, Non-renormalizable theories do not have a stochastic interpretation, Laboratoire de Physique Théorique de l'École Normale Supérieure preprint, 1984.Google Scholar
  38. [38]
    R. Floreanini and O. Foda, Stochastic quantization of nonrenormalizable theories, ISAS (Trieste) preprint 56/84/E.P.Google Scholar
  39. [39]
    L. Baulieu and D. Zwanziger, Nucl. Phys. B193 (1981) 163.CrossRefGoogle Scholar
  40. [40]
    M. Horibe, A. Hosoya and J. Sakamoto, Progr. Theor. Phys. 70 (1983) 1636.Google Scholar
  41. [41]
    V.N. Gribov, Nucl. Phys. B139 (1978) 1.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Helmut Rumpf
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WienViennaAustria

Personalised recommendations