Fields on a random lattice II random surfaces : A search for a discrete model

  • M. Bander
  • O. Itzykson
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 226)


Euler Characteristic Free Field Flat Space Conformal Anomaly Dual Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N.M. Christ, R. Friedberg, T.D. Lee, Nucl. Phys. B202, 89 (1982), B210 (FS6) 310, 337 (198 ).CrossRefGoogle Scholar
  2. [1]a
    T.D. Lee “Discrete mechanics”, to be published in the proceedings of the International School of Subnuclear Physics, Erice, 1983.Google Scholar
  3. [2]
    C. Itzykson “Fields on a random Lattice”, to be published in the proceedings “Progress in Gauge fields Theory”, Cargése 1983.Google Scholar
  4. [3]
    T. Regge, Nuovo Cimento 19, 551 (1961).Google Scholar
  5. [4]
    K. Wilson, Phys. Rev. D10, 2445 (1974).Google Scholar
  6. [5]
    D.J. Wallace in “Recent: dvances in field theory and statistical mechanics”, J.B. Zuber and R. Stora, eds, Les Houches 1982, North Holland Amsterdam (1984).Google Scholar
  7. [6]
    A.M. Polyakov, Phys. Lett. B103, 1207 (1981).Google Scholar
  8. [7]
    G. Parisi, Phys. Lett. B81, 957 (1979).Google Scholar
  9. [8]
    J. Fröhlich “The statistical mechanics of surfaces” presented at the Sitges meeting (1884).Google Scholar
  10. [9]
    “String theories”, ed. by Jacob, North Holland, Amsterdam (1974)Google Scholar
  11. [10]
    A. Billoire, D.J. Gross, E. Marinari, Phys. Lett. 139B, 239 (1984)Google Scholar
  12. [10a]
    D.J. Gross, Phys. Lett. 138B, 185 (1984).Google Scholar
  13. [11]
    B. Duplantier, Phys. Lett. 141B, 239 (1984).Google Scholar
  14. [12]
    J. Cheeger, W. Willer, R. Schrader, Comm. Math. Phys. 92, 405 (1982).CrossRefGoogle Scholar
  15. [13]
    K. Fujikawa Phys. Rev. D21, 2848 (1980), D23, 2262 (1981).Google Scholar
  16. [14]
    R. Friedberg, T.D. Lee “Derivation of Regge's action from Einstein's Theory of General Relativity” Columbia preprint CU-T.P-281. C. Feinberg, R. Friedberg, T.D. Lee, M.C. Ren, “Lattice gravity near the continum limit”-Columbia preprint CU-T.P-281.Google Scholar
  17. [15]
    H.W. Hamber, R.M. Williams, “Higher derivative quantum gravity on a simplicial lattice” LAS preprint (1984).Google Scholar
  18. [16]
    F. David, “Planar Diagrams, two dimensional lattice gravity and surface models”, Saclay preprint SPhT/84/25 (1984).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • M. Bander
    • 1
  • O. Itzykson
    • 1
  1. 1.CEN-SaclayService de Physique ThéoriqueGif sur Yvette, CedexFrance

Personalised recommendations