Advertisement

Spectral transform approach to Bäcklund transformations

  • A. Degasperis
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 226)

Keywords

Evolution Equation Nonlinear Evolution Equation mKdV Equation Backlund Transformation Commutativity Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.K. Bullough, P.J. Caudrey (editors), Solitons, Topics in Current Physics, 17, Springer, Berlin, 1980.Google Scholar
  2. [2]
    F. Calogero, A. Degasperis, Spectral Transform and Solitons, North-Holland, Amsterdam, Vol. I, 1982; Vol. II, in preparation.Google Scholar
  3. [3]
    R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Solitons and Nonlinear Waves, Academic Press, New York, 1982.Google Scholar
  4. [4]
    R.M. Miura (editor), Bäcklund Transformations, Lecture Notes in Mathematics 515, Springer, Berlin, 1976.Google Scholar
  5. [5]
    C. Rogers, W.F. Shadwick, Bäcklund Transformations and Their Applications, Academic Press, New York, 1982.Google Scholar
  6. [6]
    F.A.E. Pirani, D.C. Robinson, W.F. Shabwick, Local Jet-bundle Formulation of Bäcklund Transformations, Reidel, Dordrecht, 1979.Google Scholar
  7. [7]
    P.C. Sabatier, “Rational reflection coefficients in one dimensional inverse scattering and applications”, preprint PM/83/5, Montpellier, 1983.Google Scholar
  8. [8]
    M.J. Ablowith, H. Segur, Solitons and Inverse Scattering Transform. SIAM, Philadelphia, 1981.Google Scholar
  9. [9]
    M. Boiti, B.G. Konopelchenko, F. Pempinelli, “Bäcklund Transformations via Gauge Transformations in 2+1 Dimensions” Inverse Problems (to be published).Google Scholar
  10. [10]
    F. Calogero, A. Degasperis, “Elementary Bäcklund Trasformations, nonlinear superposition formulae and algebraic construction of solutions for the nonlinear evolution equations solvable by the Zakharov-Shabat spectral problem”, Physica D (to be published).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • A. Degasperis
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di RomaRomaItaly
  2. 2.Sezione di RomaIstituto Nazionale di Fisica NucleareItaly

Personalised recommendations