Bäcklund transformations for nonlinear field equations

  • B. Kent Harrison
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 226)


Field Equation Einstein Equation Killing Vector Nonlinear Evolution Equation Riemann Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Bäcklund, Einiges uber Curven and Flachentransformationen, Lund Universitets Arsskrift 10 (1875).Google Scholar
  2. 2.
    F. J. Chinea, Einstein equations in vacuum as integrability conditions, Phys. Rev. Lett. 52, 322–324 (1984).CrossRefGoogle Scholar
  3. 3.
    A. Dold and B. Eckmann, eds., Bäcklund Transformations, Springer-Verlag, Berlin-Heidelberg, 1976.Google Scholar
  4. 4.
    F. J. Ernst, New formulation of the axially symmetric gravitational field problem, Phys. Rev. 167, 1175–1178 (1968).CrossRefGoogle Scholar
  5. 5.
    F. B. Estabrook, Moving frames and prolongation algebras, J. Math. Phys. 23, 2071–2076 (1982).CrossRefGoogle Scholar
  6. 6.
    M. Garses, Prolongation structure and a Bäcklund transformation for vacuum Einstein's field equations, Phys. Lett. A 101A, 388–390 (1984).CrossRefGoogle Scholar
  7. 7.
    B. K. Harrison, Bäcklund transformation for the Ernst equation of general relativity, Phys. Rev. Lett. 41, 1197–1200 (1978).CrossRefGoogle Scholar
  8. 8.
    B. K. Harrison, Search for inverse scattering formulation of Einstein's vacuum equations with one nonnull Killing vector, paper given at the Ninth International Conference on General relativity and Gravitation, Jena, DDR, 1980.Google Scholar
  9. 9.
    B. K. Harrison, Study of the Ernst equation using a Bäcklund transformation, in Proceedings of the Second Marcel Grossmann meeting on General Relativity, R. Ruffini, ed., North-Holland, 1982.Google Scholar
  10. 10.
    B. K. Harrison, Ernst equation Bäcklund transformations revisited: new approaches and results, in Proceedings of the Third Marcel Grossmann Meeting on General Relativity, Hu Ning, ed., Science Press and North-Holland, 1983.Google Scholar
  11. 11.
    B. K. Harrison, Unification of Ernst-equation Bäcklund transformations using a modified Wahlquist-Estabrook technique, J. Math. Phys. 24, 2178–2187, (1983).CrossRefGoogle Scholar
  12. 12.
    B. K. Harrison, Prolongation structures and differential forms, Proceedings of the Workshop on Exact Solutions of Einstein's equations, Retzbach, West Germany, November 1983, Springer-Verlag, to be published.Google Scholar
  13. 13.
    B. K. Harrison, Integrable systems in general relativity, Proceedings of the Nonlinear Studies Summer Seminar, Santa Fe, New Mexico, July 1983, Lectures in Applied Mathematics, American Mathematical Society, to be published.Google Scholar
  14. 14.
    B. K. Harrison and F. B. Estabrook, Geometric approach to invariance groups and solution of partial differential systems, J. Math. Phys. 12, 653–666 (1971).CrossRefGoogle Scholar
  15. 15.
    G. L. Lamb, Jr., Bäcklund transformations at the turn of the century, in reference 3, 69–79.Google Scholar
  16. 16.
    H. C. Morris, Prolongation structure and nonlinear evolution equations in two spatial dimensions, J. Math. Phys. 17, 1870–1872 (1976).CrossRefGoogle Scholar
  17. 17.
    G. Neugebauer, Bäcklund transformations of axially symmetric stationary gravitational fields, J. Phys. A: Math. Gen. 12, L67–L70 (1979).CrossRefGoogle Scholar
  18. 18.
    N. Sanchez, Einstein equations, self-dual Yang-Mills fields and non-linear sigma models, preprint, 1983.Google Scholar
  19. 19.
    A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin, The soliton: a new concept in applied science, Proc. IEEE 61, 1443–1483 (1973).Google Scholar
  20. 20.
    H. D. Wahlquist and F. B. Estabrook, Bäcklund transformation for solutions of the Korteweg-deVries equation, Phys Rev. Lett. 31, 1386–1390 (1973).CrossRefGoogle Scholar
  21. 21.
    H. D. Wahlquist and F. B. Estabrook, Prolongation structures of nonlinear evolution equations, J. Math. Phys. 16, 1–7 (1975).CrossRefGoogle Scholar
  22. 22.
    H. D. Wahlquist, private communication.Google Scholar
  23. 23.
    N. J. Zabusky and M. D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240–243 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • B. Kent Harrison
    • 1
  1. 1.Department of Physics and AstronomyBrigham Young University ProvoUtah

Personalised recommendations