A new class of unitarizable highest weight representations of infinite dimensional Lie algebras

  • H. P. Jakobsen
  • V. G. Kac
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 226)


Positive Root Hermitian Form Verma Module Hermitian Symmetric Space Borel Subalgebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Enright, R. Howe, and. Wallach, A classification of unitary highest weight modules, in “Repriesentation theory of reductive groups”, P.C. Trombi ed., Progress in Math. 40, Birkhaüser, Boston, 1983.Google Scholar
  2. 2.
    Harish-Chandra, Representations of semi-simple Lie groups 1V, V, Amer. J. Math. 77, 743–777 (1955); 78, 1–41 (1956).Google Scholar
  3. 3.
    H.P. Jakobsen, Hermitian symmetric spaces and their unitary highest weight modules J. Funct. Anal. 52 (1983), 385–412.CrossRefGoogle Scholar
  4. 4.
    V.G. Kac, Infinite dimensional Lie algebras. Progress in Math. 44. Birkhäuser Boston 1983.Google Scholar
  5. 5.
    F. Levstein, A classification of involutions of affine Kac-Moody algebras, Dissertation, MIT, 1983.Google Scholar
  6. 6.
    H. Rossi and M. Vergne, Analytic continuation of the holomorphic discrete series of a semi-simple Lie group, Acta Math. 136, 1–59 (1976).Google Scholar
  7. 7.
    N.Wallach, Analytic continuation of the discrete series II, Trans. Amer. Math. Soc. 251 (1979), 19–37.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • H. P. Jakobsen
    • 1
  • V. G. Kac
    • 2
  1. 1.Mathematics InstituteCopenhagenDenmark
  2. 2.Department of MathematicsM.I.T.CambridgeUSA

Personalised recommendations