Physical models for type I supernovae and the distance scale

  • J. Craig Wheeler
  • Peter G. Sutherland
4. Optical Supernovae and Inference of Extragalatic Distances
Part of the Lecture Notes in Physics book series (LNP, volume 224)


The degenerate carbon deflagration models for Type I supernovae are consistent with a variety of observations of light curves and spectra. Progenitor systems consisting of carbon/oxygen white dwarfs with normal companions or of binary white dwarfs are discussed and limits are established on the amount of 56Ni which can be ejected in models which match the observations. The luminosity at maximum light in these models is proportional to the amount of nickel ejected, and hence limits can be set on the distance scale and H0. If the carbon deflagration model is correct, then 0.4 < H0/(100 km/s/Mpc) <0.7.


Light Curf White Dwarf Distance Scale Hubble Constant Maximum Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnett, W. D. 1982, Ap. J., 253, 785.CrossRefGoogle Scholar
  2. Arnett, W. D., Branch, D. and Wheeler, J. C. 1985, Nature, submitted.Google Scholar
  3. Axelrod, T. S. 1980, Ph.D. thesis, University of California, Santa Cruz.Google Scholar
  4. Branch, D., Buta, R., Falk, S.W., McCall, M.L., Sutherland, P.G., Uomoto, A., Wheeler, J.C., and Wills, B.J. 1982, Ap. J. Letters, 252, L61.Google Scholar
  5. Branch, D., Lacy, C. H., McCall, M. L., Sutherland, P. G., Uomoto, A., Wheeler, J. C., Wills, B. J. 1983, Ap. J., 270, 123.Google Scholar
  6. Ferland, G. J., and Shields, G. A.1978, Ap. J., 226, 172.CrossRefGoogle Scholar
  7. Fujimoto, M. Y. and Taam, R. E. 1982, Ap. J., 260, 249.CrossRefGoogle Scholar
  8. Iben, I., Jr., and Tutukov, A. U. 1984, Ap. J. Suppl., 54, 335.CrossRefGoogle Scholar
  9. McDonald, J. 1984, in press.Google Scholar
  10. Müller, E. and Arnett, W. D. 1982, Ap. J. Letters, 261, L109.Google Scholar
  11. Nomoto, K. 1982, Ap. J., 257, 780.CrossRefGoogle Scholar
  12. Nomoto, K., Thielemann, F.-K., and Yokoi, K. 1984, in preparation.Google Scholar
  13. Webbink, R. F. 1984, Ap. J. Lett., 277, 355.Google Scholar
  14. Wheeler, J.C. 1982, in Supernovae: A Survey of Current Research, eds. M.J. Rees and R. J. Stoneham (Dordrecht: Reidel), 167.Google Scholar
  15. Woosley, S.E., Axelrod, T.S., and Weaver, T.A. 1984, in Proceedings of the Erice Workshop on Stellar Nucleosynthesis, ed. C. Chiosi and A. Renzini, in press.Google Scholar
  16. Woosley, S. E., Weaver, T. A., and Taam, R. E. 1980, in Type I Supernovae, ed. J. C. Wheeler(Austin: University of Texas), 96.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. Craig Wheeler
    • 1
  • Peter G. Sutherland
    • 2
  1. 1.University of Texas at AustinUSA
  2. 2.McMaster UniversityUSA

Personalised recommendations