Spectropolarimetry of supernovae

  • Marshall L. McCall
2. Observations of Supernovae and Supernovae Remnants
Part of the Lecture Notes in Physics book series (LNP, volume 224)


A new technique is introduced for testing the validity of the spherical symmetry approximation of the Baade method for determining distances to supernovae.Lines with P Cygni profiles produced by resonance scattering in an expanding atmosphere with non-circular isophotes should show a linear polarization in excess of that in the continuum. Thus, spectropolarimetry offers a means of measuring the roundness of a supernova envelope and assessing the reliability of Baade method distances.So far, data has been obtained for two Type I supernovae. The data are discussed and interpreted in terms of a simple two-component atmosphere model for the polarization in P Cygni scattering profiles.


Spherical Symmetry Royal Greenwich Observatory Maximum Light Optical Continuum Intrinsic Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Branch, D. 1980, in Supernova Spectra, ed. R. E. Meyerott and G. H. Gillespie (New York: American Institute of Physics), p. 39.Google Scholar
  2. Branch, D., Falk, S. W., McCall, M. L., Rybski, P., Uomoto, A. K., and Wills, B. J. 1981, Ap. J., 244, 780.CrossRefGoogle Scholar
  3. Branch, D., Lacy, C. H., McCall, M. L., Sutherland, P. G., Uomoto, A., Wheeler, J. C., and Wills, B. J. 1983, Ap. J., 270, 123.CrossRefGoogle Scholar
  4. Buta, R. J. 1982, Pub. A.S.P., 94, 578.CrossRefGoogle Scholar
  5. Buta, R. J., and Turner, A. 1983, Pub. A.S.P., 95, 72.CrossRefGoogle Scholar
  6. Cassinelli, J. P., and Hummer, D. G. 1971, M.N.R.A.S., 154, 9.Google Scholar
  7. Chandrasekhar, S. 1960, Radiative Transfer (New York; Dover).Google Scholar
  8. de Vaucouleurs, G., de Vaucouleurs, A., Buta, R., Ables, H. D., and Hewitt, A. V. 1981, Pub. A.S.P., 93, 36.CrossRefGoogle Scholar
  9. Harrington, J. P., and Collins, G. W. II 1968, Ap. J., 151, 1051.CrossRefGoogle Scholar
  10. Hutchings, J. B. 1972, M.N.R.A.S., 158, 177.Google Scholar
  11. McCall, M. L. 1984, M.N.R.A.S., in press.Google Scholar
  12. McCall, M. L., Reid, N., Bessell, M. S., and Wickramasinghe, D. 1984, M.N.R.A.S., in press.Google Scholar
  13. McLean, I. S., Heathcote, S. R., Paterson, M. J., Fordham, J., and Shortridge, K. 1984, M.N.R.A.S., 209, 655.Google Scholar
  14. Shapiro, P. R., and Sutherland, P. G. 1982, Ap. J., 263, 902.CrossRefGoogle Scholar
  15. Sramek, R. A., Panagia, N., and Weiler, K. W. 1984, preprint.Google Scholar
  16. Tuohy, I. R., Clark, D. H., and Burton, W. M. 1982, Ap. J., 260, L65.CrossRefGoogle Scholar
  17. Wagoner, R. V. 1981, Ap. J., 250, L65.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Marshall L. McCall
    • 1
  1. 1.David Dunlap Observatory and University of TorontoUSA

Personalised recommendations