Infinite behaviour and fairness in petri nets

  • Heino Carstensen
  • Rüdiger Valk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 188)


Several classes of ω-languages of labelled Petri nets are defined and related to each other. Since such nets can be interpreted to behave fair, these notions are compared with explicit definitions of fairness for nets.


Infinite Sequence Finite Automaton Firing Sequence Firing Rule Fairness Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Best]
    E.Best; Why Three Philosophers are different from Five Philosophers; BEGRUND-11, GMD (ISF), 1982. An Equivalent Result on ‘Fairness'; BEGRUND-19 and BEGRUND-20, GMD (ISF), 1983Google Scholar
  2. [Carstensen1]
    H.Carstensen; Fairneß bei Petrinetzen mit unendlichem Verhalten; Bericht Nr. 93, Fachbereich Informatik, Universität Hamburg, 1982Google Scholar
  3. [Carstensen2]
    H. Carstensen; Fairness Criteria that Guarantee Infinite Firing of Transitions; Mitteilung Nr. 109, Fachbereich Informatik, Universität Hamburg, 1983.Google Scholar
  4. [Cohen,Gold]
    R.S. Cohen,A.Y. Gold; Theory of ω-Languages, Part I: Characterization of ω-Context-Free Languages, Part II: A Study of Various Models of ω-Type Generation and Recognition; J.Compt.System Sci. 15(1977) 169–208.Google Scholar
  5. [Eilenberg]
    S. Eilenberg; Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.Google Scholar
  6. [Genrich, Stankiewics-Wichno]
    H.J.Genrich,E.Stankiewics-Wichno; A Dictionary of some Basic Notations of Net Theory; in Brauer (ed.) Net Theory and Applications, LNCS Vol. 84, 1980.Google Scholar
  7. [Hack]
    R.M.Hack;Petri Net Languages; MIT, Project MAC, Computer Structure Group, Memo 124, 1975.Google Scholar
  8. [Hossley]
    R. Hossley; Finite Tree Automata and ω-automata; MIT,MAC, Tech.Rep. 102, Cambridge Mass., 1972.Google Scholar
  9. [Jantzen,Valk]
    M.Jantzen,R.Valk; Formal Properties of Place/Transition Nets; in Brauer (ed.), Net Theory and Applications, LNCS Vol. 84, 1980.Google Scholar
  10. [Karp,Miller]
    R.M. Karp,R.E. Miller; Parallel Program Schemata; J.Compt.System Sci. 3(1969) 147–195.Google Scholar
  11. [Landweber]
    L.H. Landweber; Decision Problems for ω-automata; Math.Syst. Theory 3(1969) 376–384.Google Scholar
  12. [Lehmann,Pnueli, Stavi]
    D.Lehmann,A.Pneuli,J.Stavi; Impartiality, Justice, Fairness: The Ethics of Concurrent Termination; Automata, Languages, Programming, 8th Colloquium, LNCS Vol. 115, 1981.Google Scholar
  13. [Nivat]
    M.Nivat; On the Synchronisation of Processes; INRIA, Rap.Rech. No 3 1980.Google Scholar
  14. [Valk]
    R. Valk; Infinite Behaviour of Petri Nets; Theor.Comp.Sci. 25(1983) 311–341.Google Scholar
  15. [Valk,Jantzen]
    R.Valk,M.Jantzen; The Residue of Vector Sets with Applications to Decidability Problems in Petri Nets, in this volume. also Bericht Nr. 101, Fachbereich Informatik, Univ. Hamburg.Google Scholar
  16. [Vidal-Naquet]
    G.Vidal-Naquet; Réseaux de Petri Déterministes,Thèse d'Etat, Univ. Paris VI, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Heino Carstensen
    • 1
  • Rüdiger Valk
    • 1
  1. 1.Fachbereich InformatikUniversität HamburgHamburg 13

Personalised recommendations