Modelling scheduling problems with timed petri nets

  • J. Carlier
  • Ph. Chretienne
  • C. Girault
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 188)


In this paper, we show how to model with a timed Petri net, tasks, resources and constraints of a scheduling problem.

This model has the significant advantage, over the classical one, to represent with a single formalism, succession constraints as well as resource ones.

This model allows us to extend the scheduling field and to propose solutions to new problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ABDEL-WAHAB, H.M., KAMEDA, T. "Scheduling to minimize maximum cumulative cost subject to series-parallel precedence constraints" Operations Res. 26, 141–158, 1978.Google Scholar
  2. [2]
    BERTHOMIEU, B., MENASCHE, M. "A state enumeration approach for analyzing time Petri nets" 3rd european workshop on application and theory of Petri nets, VARENNA, sept. 1982.Google Scholar
  3. [3]
    BRAMS, G.W. "Réseaux de Petri: théorie et pratique" Tome 1: Théorie et Analyse (Masson 1981).Google Scholar
  4. [4]
    BRAUER, W. (Editor) "Advanced course on general net theory of processes and systems, HAMBURG, october 1979 Lecture notes in Computer Science, n°84, Springer Verlag, 1980.Google Scholar
  5. [5]
    CARLIER, J., CHRETIENNE, Ph. "Un domaine très ouvert: les problèmes d'ordonnancement" RAIRO, recherche opérationnelle, n°3, août 1982.Google Scholar
  6. [6]
    CARLIER, J., RINNOOY-KAN, A.H.G. "Financing and scheduling" Operations Research Letters, 1, 1982.Google Scholar
  7. [7]
    CARLIER, J. "Le problème de l'ordonnancement des paiements de dettes" RAIRO, série verte, n°1, février 1984.Google Scholar
  8. [8]
    CHRETIENNE, Ph. "Thèse d'Etat: Les réseaux de Petri temporisés" Université Paris VI, juin 1983.Google Scholar
  9. [9]
    CHRETIENNE, Ph. "Some results on the control of timed Petri nets" 2nd european workshop on theory and application of Petri-nets. BAD-HONNEF, septembre 1981.Google Scholar
  10. [10]
    CHRETIENNE, Ph. "Timed event graphs: behaviour analysis and a study of the reachability relation" C.I.S.S. 83, John Hopkins University, BALTIMORE, mars 1983.Google Scholar
  11. [11]
    COFFMAN, E.G. "Computer and job-shop scheduling theory" John Wiley and Sons, 1976.Google Scholar
  12. [12]
    GAREY, M.R., JOHNSON, D.S. "Computers and intractability" W.H. Freeman and Company, 1978.Google Scholar
  13. [13]
    GRAHAM, R.L., LAWLER, E.L., LENSTRA, J.K., RINNOOY KAN, A.H.G. "Optimization and approximation in deterministic sequencing and scheduling: a survey" Ann Discrete Math., 1979.Google Scholar
  14. [14]
    HOLT, A., COMMONER, F., EVEN, S., PNUELI, A. "Marked directed graphs" Journal of computer and system sciences, vol.5, n°5, oct. 1971.Google Scholar
  15. [15]
    MERLIN, P. "A study of the recoverability of computer systems" Ph. D. thesis, University of California, IRVINE Computer Science.Google Scholar
  16. [16]
    PETERSON, J. "Petri-net theory and the modelling of systems" Prentice-Hall, 1981.Google Scholar
  17. [17]
    RAMCHANDANI, C. "Analysis of asynchronous concurrent systems by timed Petri nets" Ph. D. thesis, M.I.T., CAMBRIDGE, Mass. Projet MAC. MAC-TRI20, Feb. 1974.Google Scholar
  18. [18]
    ROY, B. "Algèbre moderne et théorie des graphes" Tome 2, Dunod, 1970.Google Scholar
  19. [19]
    SIFAKIS, J. "Le contrôle des systèmes asynchrones: concepts, priorités, analyse statique" Thèse d'Etat, Université scientifique et médicale de Grenoble, juin 1979.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. Carlier
    • 1
  • Ph. Chretienne
    • 1
  • C. Girault
    • 1
  1. 1.Institut de ProgrammationUniversité Pierre et Marie Curie (Paris VI) C.N.R.S. - E.R.A. 592France

Personalised recommendations