Computation of flows for unary-predicates/transitions-nets

  • Jacques Vautherin
  • Gerard Memmi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 188)


We have seen that F1, F2, F 3 a can be computed with the help of polynomial algorithms, without unfolding the net. This allows A not to be given in extension, what is often useful or even necessary in the modelling of systems. We are building a tool which uses these algorithms.

The example 2 shows that it would be useful to look for other classes of flows, or, at least, for refinement of the classes already presented. An other interesting question would be to know the cases where F0 is covered by F1, F 3 a .

At last, we think that it will be possible to extend our calculus to all Pr/Tr-nets. Meanwhile, one can transform Pr/Tr-nets into UP/T-nets as it is shown by the last example.


Finite Type Incidence Matrix Linear Extension Polynomial Algorithm Reachable Marking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Br83]
    Brams G.W.: Réseaux de Petri: Théorie et pratique. Masson editeur, Paris (1983).Google Scholar
  2. [CH56]
    Chevalley C.: Fundamental concepts of algebra. Academic press inc — Publishers — New York (1956).Google Scholar
  3. [FC69]
    Fiorot J.C.; Gondran M.: Résolution des systèmes linéaires en nombres entiers. Bulletin de la direction des Etudes et Recherches EDF, Série C, No2 (1969).Google Scholar
  4. [GL79]
    Genrich H.J.; Lautenbah K.: Predicate/Transition-nets. Net Theory and Application, Lect. Notes Comput. Sci. 84 (1980).Google Scholar
  5. [GL82]
    Genrich H.J.; Lautenbach K.: S-invariance in Predicate/Transition-nets. Applications and Theory of Petri-nets, Informatik Fachberichte 66 (1983).Google Scholar
  6. [KB78]
    Kannan R.; Bachem A.: Polynomial algorithm for computing the Smith and Hermite normal forms of an integer matrix. Report 7895-OR, Institut fur Okonometrie und Operations Research, Univ. Bonn (1978).Google Scholar
  7. [Je79]
    Jensen K.: Coloured Petri-nets and the invariant-method. DAIMI PB-104, Aarhus University (1979).Google Scholar
  8. [Je82]
    Jensen K.: High-level Petri-nets. Applications and Theory of Petri-nets, Informatik Fachberichte 66 (1983).Google Scholar
  9. [LP82]
    Lautenbach K.; Pagnoni A.: Liveness and duality in marked-graph-like Pr/Tr-nets. Proc. of the 4th European Workshop on Application and Theory of Petri-nets, Toulouse, France (1983).Google Scholar
  10. [LS74]
    Lautenbach K.; Schmid H.: Use of Petri-nets for proving correctness of concurrent process systems. Information Processing 1974, North-Holland Pub. Co. (1974).Google Scholar
  11. [Mm83]
    G. MEMMI Methodes d'analyse de réseaux de Petri, réseaux a files et applications aux systèmes temps réel. Thèse de doctorat d'Etat, Université P. et M. Curie, Paris (1983).Google Scholar
  12. [Mv81]
    Mevissen H.: Algebraische bestimmung von S-invarianten in Pr/Tr-netzen. ISF-Report 81.01, 12 Oktober 1981 (1981).Google Scholar
  13. [Re82]
    Reisig W.: Petri-nets with individual tokens. Applications and Theory of Petri-nets, Informatik Fachberichte 66 (1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Jacques Vautherin
    • 1
    • 2
  • Gerard Memmi
    • 3
  1. 1.Ecole PolytechniquePalaiseau CedexFrance
  2. 2.L.R.I. (bat. 490)Université Paris-SudOrsay CedexFrance
  3. 3.E.N.S.T.Paris Cedex 13France

Personalised recommendations