Advertisement

On structural properties of generalized processes

  • V. E. Kotov
  • L. A. Cherkasova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 188)

Abstract

The main aim of this paper has been to propose a next step in increasing the level of the presentation of non-sequential processes. Occurrence nets allow to specify and study asynchronous parallelism in processes. The propozed generalization (acyclic nets) gives the additional possibility to include in the specification non-determinism of conflict process elements. New notions arise such as al-sections, L-density, M-density which give topological characterization of distinction "good" and "bad" interrelation between intuitive concepts of sequential, parallel and alternative occurrences of events and conditions. The connection between K-, L-, M-density of process nets and, correspondingly, boundness, fairness and free-choice property of Petri nets has been indicated.

Proofs of the theorems and Lemmas stated above will be presented elsewhere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Petri C.A. Non-sequential processes. ISP-Report 77.05. St.Augustin: Gesellschaft für Mathematik und Datenverarbeitung, 1971, 31 p.Google Scholar
  2. [2]
    Petri C.A. Concurrency as a basis for system thinking. ISP-Report 78.06, St. Augustin: Gesellschaft für Mathematik und Datenverarbeitung, 1978, 20 p.Google Scholar
  3. [3]
    Peterson J.G. Petri net theory and the modelling of systems. Prentice-Hall Inc., N.Y., 1981, 290 p.Google Scholar
  4. [4]
    Petri C.A. Concurrency. Lecture Notes in Computer Science, vol. 84, Springer-Verlag, Berlin, 1979, p.251–260.Google Scholar
  5. [5]
    Best E. The relative strength of K-density. Lecture Notes in Computer Science, vol.84, Springer-Verlag, Berlin, 1979, p.261–276.Google Scholar
  6. [6]
    Nielsen M., Plotkin G., Winskel G. Petri nets, event structures and domains. Lecture Notes in Computer Science, vol.70, Springer-Verlag, Berlin, 1979, p.266–284.Google Scholar
  7. [7]
    Best E., Merceron-Brecht A. Some properties of non-sequential processes. ISF-Report 82.07, Gesellschaft für Mathematik und Datenverarbeitung, 1982, 23 p.Google Scholar
  8. [8]
    Fernandez C., Thiagrajan P.S. D-Continuous Causal Nets: A Model of Non-Sequential Processes. ISF-Report 82.05, Gesellschaft für Mathematik und Datenverarbeitung, 1982, 40 p.Google Scholar
  9. [9]
    Queille J.P., Sifakis J. Fairness and properties in transition systems — a time Logic to deal with fairness. Research Report RR-292, IMAG, March, 1982, 30 p.Google Scholar
  10. [10]
    Janicki R. On atomic nets and concurrency relations. Lecture Notes in Computer Science 88, Springer-Verlag, Berlin, 1980, p.320–333.Google Scholar
  11. [11]
    Goltz V., Reisig W. Processes of place-transition nets. Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1983, vol.154, p.264–277.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • V. E. Kotov
    • 1
  • L. A. Cherkasova
    • 1
  1. 1.Computing CenterSiberian Branch of the USSR Academy of SciencesNovosibirskUSSR

Personalised recommendations