Advertisement

On the maximum size of random trees

  • M. Protasi
  • M. Talamo
Colloquium On Trees In Algebra And Programming Algorithms And Combinatorics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 185)

Abstract

In this paper we prove a conjecture of Erdös and Palka on the maximum size of random trees. Furthermore, while, generally speaking, in the probabilistic analysis the results are proved only when the size of the graphs tends to infinity, in this case, with extremely small probability of error, the results also hold for graphs of small size.

Keywords

Random Graph Small Probability Random Tree Sparse Graph Dense Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    P. Erdös, Z. Palka: Trees in random graphs, Discr. Math., Vol. 46 (1983).Google Scholar
  2. [2]
    P. Erdös, A. Renyi: On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., Vol. 5A (1960).Google Scholar
  3. [3]
    J. Friedman: Constructing 0 (n log n) size monotone formulae for the k-th elementary symmetric polynomial of n boolean variables, Proc. 25th Symp. on Foundations of Computer Science (1984).Google Scholar
  4. [4]
    M.R. Garey, D.S. Johnson: Computers and intractability. A guide to the theory of NP completeness, Freeman, San Francisco (1978).Google Scholar
  5. [5]
    M. Karonski, Z. Palka: On the size of a maximal induced tree in a random graph, Math. Slovaca, Vol. 30 (1980).Google Scholar
  6. [6]
    A. Marchetti Spaccamela, M. Protasi: The largest tree in a random graph, Theor. Comp. Sci., Vol. 23 (1983).Google Scholar
  7. [7]
    Z. Palka, A. Rucinski: On the order of the largest induced tree in a random graph, (to appear).Google Scholar
  8. [8]
    M. Protasi, M. Talamo: A new probabilistic model for the study of algorithmic properties of random graph problems, Proc. Conference on Foundations of Computation Theory, Borgholm, Lect. Notes in Comp. Sci., Springer Verlag (1983).Google Scholar
  9. [9]
    M. Protasi, M. Talamo: A general analysis of the max independent set and related problems on random graphs, Tech. Rep. n. 3/84, Dipartimento di Matematica, Università dell'Aquila (1984).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • M. Protasi
    • 1
  • M. Talamo
    • 2
  1. 1.Dipartimento di Matematica, Università dell'AquilaL'Aquila. Incaricato di ricerca presso lo IASI-CNR
  2. 2.Instituto di Analisi dei Sistemi ed Informatica del C.N.R.Roma

Personalised recommendations