Advertisement

Ion-selective bulk membranes as models for biomembranes

Active ion transport as a consequence of stationary state situations at asymmetric biomembranes
  • Karl Cammann
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 128)

Abstract

Ion-selective bulk membranes are the electro-active component of ion-selective electrodes, which sense the activity of certain ions by developing an ion-selective potential difference according to the Nernst equation at their phase boundary with the solution to be measured. The main differences to biological membranes are their thickness and their symmetrical structure. Nevertheless they are used as models for biomembranes.

The general theoretical treatment of ion-selective membranes assumes a homogeneous membrane phase and thermodynamic equilibrium at the phase boundaries. Obvious deviations from a Nernstian behavior are explained by an additional diffusion potential inside the membrane. However, allowing stationary state conditions in which the thermodynamic equilibrium is not established some hitherto difficult to explain facts (e.g., super-Nernstian slope, dependence of the selectivity of ion-transport upon the availability of co-ions, etc.) can be understood more easily.

A consequence of this theoretical approach which includes kinetic parameters is the establishment and coupling of certain ion fluxes across the phase boundary (equality of the sum of cathodic and anodic partial currents leading to a mixed potential). If a similar approach can be applied to asymmetric biological membranes with different thermodynamic equilibrium situations at both surfaces, the active ion transport could also be understood.

Keywords

Selectivity Coefficient Exchange Current Density Mixed Potential Membrane Phase Diffusion Layer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

F References

  1. 1.
    Lark-Horovitz, K.: Naturwiss. 19, 397 (1931)CrossRefGoogle Scholar
  2. 2.
    Nicolsky, B. P., Tolmacheva, T. A.: Zh. Fiz. Khim. 10, 495 (1937)Google Scholar
  3. 3.
    Schindler, J. G., Schindler, M. M.: Bioelektrochemische Membran-Elektroden, Berlin, de Gruyter 1983Google Scholar
  4. 4.
    Guilbaut, G. G.: Enzyme electrodes in analytical chemistry, in: Comprehensive Analytical Chemistry (ed.) Svehla, G. S., Amsterdam, Pergamon Press 1977Google Scholar
  5. 5.
    Rechnitz, G. A.: Science 214, 287 (1981)Google Scholar
  6. 5a.
    Keating, M. Y., Rechnitz, G. A.: Anal. Chem. 56, 801 (1984)PubMedGoogle Scholar
  7. 6.
    Eisenman, G. (ed.): Glass Electrodes for Hydrogen and other Cations, New York, M. Dekker 1967Google Scholar
  8. 7.
    Durst, R. A. (ed.): Ion-Selective Electrodes, Washington, Natl. Bur. of Standards Spec. Publ. 314, 1969Google Scholar
  9. 8.
    Buck, R. P.: Potentiometry, pH measurements and ion-selective electrodes, in: Physical Methods of Chemistry, part IIa (eds.) Weissberger, A., Rossiter, B. W., New York, Interscience 1971Google Scholar
  10. 9.
    Moody, G. J., Thomas, J. D. R.: Selective Ion Sensitive Electrodes, Watford, Merrow 1971Google Scholar
  11. 10.
    Eisenman, G. (ed.): Membranes, Vol. 1+2, New York, M. Dekker 1972/73Google Scholar
  12. 11.
    Cammann, K.: Das Arbeiten mit ionenselektiven Elektroden, Berlin—Heidelberg—New York, Springer 1973 (2nd ed. 1977, English ed. 1979)Google Scholar
  13. 12.
    Koryta, J.: Ion-Selective Electrodes, Cambridge, Cambridge Press 1975Google Scholar
  14. 13.
    Lakshminarayanaiah, N.: Membrane Electrodes, New York, Academic Press 1976Google Scholar
  15. 14.
    Bailey, P. L.: Analysis with Ion-Selective Electrodes, London, Heyden 1976Google Scholar
  16. 15.
    Freiser, H. (ed.): Ion-Selective Electrodes in Analytical Chemistry, New York, Plenum Press 1978Google Scholar
  17. 16.
    Covington, A. K. (ed.): Ion-Selective Electrode Methodology, Boca Raton, CRC PressGoogle Scholar
  18. 17.
    Cremer, M.: Z. Biol. 47, 562 (1906)Google Scholar
  19. 18.
    Haber, F., Klemensiewicz, Z.: Z. Phys. Chem. (Leipzig) 67, 385 (1909)Google Scholar
  20. 19.
    Haber, F., Beutner, R.: ibid. 26, 327 (1908)Google Scholar
  21. 20.
    Nernst, W., Riesenfeld, E. H.: ibid. 8, 600 (1902)Google Scholar
  22. 21.
    Michaelis, L.: Die Wasserstoffionen-Konzentration, Berlin, Springer 1922Google Scholar
  23. 22.
    Horovitz, K.: Z. Physik 15, 369 (1923)CrossRefGoogle Scholar
  24. 23.
    Schiller, H.: Ann. Physik 75, 105 (1924)Google Scholar
  25. 24.
    MacInnes, D. A., Dole, M.: J.A.C.S. 52, 29 (1930)CrossRefGoogle Scholar
  26. 25.
    Lengyel, B., Blum, E.: Trans. Faraday Soc. 30, 461 (1934)CrossRefGoogle Scholar
  27. 26.
    Sokolof, S. I., Passynsky, A. H.: Z. Physik Chem., A160, 366 (1932)Google Scholar
  28. 27.
    Beutner, R.: Die Entstehung elektrischer Ströme in lebenden Geweben, Stuttgart, F. Enke 1920Google Scholar
  29. 28.
    Osterhout, W. J. V.: Proc. Nat. Acad. Sci. U.S., 21, 125 (1935)Google Scholar
  30. 29.
    Michaelis, L.: Bull. Natl. Research Council, U.S., 69, 119 (1929)Google Scholar
  31. 30.
    Teorell, T.: Proc. Natl. Acad. Sci. U.S. 21, 152 (1935)Google Scholar
  32. 31.
    Meyer, K. H., Sievers, J. F.: Helv. Chim. Acta 19, 649, 665, 987 (1936)CrossRefGoogle Scholar
  33. 32.
    Kolthoff, I. M., Sanders, H. L.: J.A.C.S. 59, 416 (1937)CrossRefGoogle Scholar
  34. 33.
    Marshall, C. E.: J. Phys. Chem. 43, 1155 (1939), ibid. 48, 67 (1944)CrossRefGoogle Scholar
  35. 34.
    Marshall, C. E.: Soil Sci. Soc. Am. Proc. 7, 182 (1942)Google Scholar
  36. 35.
    Marshall, C. E., Eime, L. O.: J.A.C.S. 70, 1302 (1948)CrossRefGoogle Scholar
  37. 36.
    Sollner, K.: J.A.C.S. 65, 2260 (1943)CrossRefGoogle Scholar
  38. 37.
    Gregor, H. P., Sollner, K.: J. Phys. Chem. 58, 409 (1954)CrossRefGoogle Scholar
  39. 38.
    Sollner, K.: Ann. N.Y. Acad. of Sci. 148, 154 (1968)Google Scholar
  40. 39.
    Eisenman, G., Rudin, D. O., Casby, J. U.: Science 126, 831 (1957)PubMedGoogle Scholar
  41. 40.
    Pungor, E., Havas, J., Tóth, K.: Acta Chim. Hung., 41, 239 (1964)Google Scholar
  42. 41.
    Pungor, E., Havas, J., Tóth, K.: Z. Chem. 5, 9 (1965)Google Scholar
  43. 42.
    Frant, M. S., Ross, J. W.: U.S. Patent No. 3.431.182 (1972)Google Scholar
  44. 43.
    Frant, M. S., Ross, J. W.: U.S. Patent No. 3.672.962 (1972)Google Scholar
  45. 44.
    Ross, J. W.: Science 156, 1378 (1967)PubMedGoogle Scholar
  46. 45.
    Shatkay, A.: Anal. Chem. 39, 1056 (1967)CrossRefGoogle Scholar
  47. 46.
    Coetzee, C. F., Freiser, H.: Anal. Chem. 40, 2071 (1968); ibid. 41, 1128 (1969)CrossRefGoogle Scholar
  48. 47.
    Štefanac, Z., Simon, W.: Chimia 20, 436 (1966); Microchem. J. 12, 125 (1967)Google Scholar
  49. 48.
    Moody, G. J., Oke, R. B., Thomas, J. D. R.: Analyst, 95, 910 (1970)CrossRefGoogle Scholar
  50. 49.
    Simon, W. et al.: Pure Appl. Chem. 44, 613 (1975)Google Scholar
  51. 50.
    Ammann, D. et al. in: Ion and Enzyme Electrodes in Biology and Medicine (eds.) Kessler, M. et al., München—Berlin—Wien, Urban & Schwarzenberg 1976Google Scholar
  52. 51.
    Güggi, M. et al.: Helv. Chim. Acta 58, 2417 (1976)CrossRefGoogle Scholar
  53. 52.
    Güggi, M., Pretsch, E., Simon, W.: Anal. Chim. Acta 91, 107 (1977)CrossRefGoogle Scholar
  54. 53.
    Sollner, K.: Z. Elektrochemie 36, 36 (1930)Google Scholar
  55. 54.
    Teorell, T.: Trans. Faraday Soc. 33, 1053 (1937)Google Scholar
  56. 55.
    Meyer, K. H., Sievers, J. F.: ibid. 33, 1073 (1937)CrossRefGoogle Scholar
  57. 56.
    Donnan, F. G.: Z. Elektrochemie 17, 572 (1911)Google Scholar
  58. 57.
    Donnan, F. G.: Chem. Rev. 1, 73 (1924)CrossRefGoogle Scholar
  59. 58.
    Morf, W. E.: The Principles of Ion-Selective Electrodes and of Membrane Transport, Amsterdam-Oxford-New York, Elsevier 1981Google Scholar
  60. 59.
    Donnan, F. G., Guggenheim, E. A.: Z. Phys. Chem. (Leipzig) 162, 346 (1932)Google Scholar
  61. 60.
    Schlögl, R.: Z. Phys. Chem. (Frankfurt a. Main) 1, 305 (1954)Google Scholar
  62. 61.
    Koryta, J.: Anal. Chim. Acta 61, 329 (1972)CrossRefGoogle Scholar
  63. 62.
    Nernst, W.: Z. Phys. Chem. 4, 129 (1889)Google Scholar
  64. 63.
    Planck, M.: Ann. Phys. 39, 161 (1890); ibid. 40, 561 (1890)Google Scholar
  65. 64.
    Johnson, F. H., Eyring, H., Polissar, M. J.: The Kinetic Basis of Molecular Biology, New York, Wiley 1954Google Scholar
  66. 65.
    Prigogine, I.: Introduction to Thermodynamic of Irreversible Processes, 2nd ed, New York, Wiley 1961Google Scholar
  67. 66.
    van der Linden, W. E.: Ion selective electrodes, in Comprehensive Analytical Chemistry, Vol. XI (ed.) Svehla, G., Amsterdam—Oxford—New York, Elsevier 1981Google Scholar
  68. 67.
    Pure Appl. Chem. 48, 127 (1976)Google Scholar
  69. 68.
    Buck, R. P.: Anal. Chem. 50, 17R (1978)Google Scholar
  70. 69.
    James, H., Carmack, G., Freiser, H.: ibid. 44, 856 (1972)CrossRefGoogle Scholar
  71. 70.
    Růžička, J., Lamm, C. L., Thell, J. C.: Analyt. Chim. Acta 62, 15 (1972)CrossRefGoogle Scholar
  72. 71.
    Bergveld, P.: IEEE Trans. Biomed. Eng. 17, 70 (1970); ibid. 19, 342 (1972)PubMedGoogle Scholar
  73. 72.
    Moss, S. D., Janata, J., Johnson, C. C.: Anal. Chem. 47, 2238 (1975)CrossRefGoogle Scholar
  74. 73.
    Janata, J., Huber, R. J.: Ion-Selective Electrode, Rev., vol. 1, 31 (1979)Google Scholar
  75. 74.
    Nicolsky, B. P., Shults, M. M., Peschechonowa, N. V., Belijustin, A. A.: Ber. Akad. Wiss. USSR 14, 641 (1961)Google Scholar
  76. 75.
    Weber, E.: Kontakte (Darmstadt) 1984 (1), 26 (1984)Google Scholar
  77. 76.
    Baucke, F. G. K.: Non-Crystalline Solids 14, 13 (1974)CrossRefGoogle Scholar
  78. 77.
    Butler, J. A. V.: Trans. Faraday Soc. 19, 729 (1924)CrossRefGoogle Scholar
  79. 78.
    Erdey-Gruz, T., Volmer, M.: Z. Phys. Chem. (Leipzig) 150, 203 (1930)Google Scholar
  80. 79.
    Bockris, J. O'M, Reddy, A. K. N.: Modern Electrochemistry, Vol. 2, New York, Plenum Press 1970Google Scholar
  81. 80.
    Cammann, K.: Dissertation, Ludwig-Maximilians-Universität, München 1975Google Scholar
  82. 81.
    Cammann, K.: Drug. Res. 28 (I), 6 (1978)Google Scholar
  83. 82.
    Cammann, K.: A mixed-potential ISE-theory in: Conference on Ion-Selective Electrodes, Budapest 1977 (ed.) Pungor, E., Budapest, Akadémiai Kiado 1978Google Scholar
  84. 83.
    Cammann, K., Rechnitz, G. A.: Anal. Chem. 48, 856 (1976)CrossRefGoogle Scholar
  85. 84.
    Cammann, K.: ibid. 50, 936 (1978)CrossRefGoogle Scholar
  86. 85.
    Akimov, G. V.: Osnovy Ucheniya o Korrozi i Zashchite Metallov, Academy of Sciences of the USSR, Moscow (1946)Google Scholar
  87. 86.
    Kozlovskii, M. T.: Vestn. Akad. Nauk Kaz SSR 4, 103 (1954)Google Scholar
  88. 87.
    Kozlovskii, M. T.: Tr. Soveshch. Elektrokhim. Academy of Sciences of the USSR, Moscow, October 4th 1956 (1959)Google Scholar
  89. 88.
    Kozlovskii, M. T., Zebreva, A. I., Gladyshev, V. P.: Amal'gamy i ikh Primenenie, Alma-Ata, Science 1971Google Scholar
  90. 89.
    Evans, U. R.: The Corrision and Oxidation of Metals — Scientific Principles and Practical Application:, St. Martin's Press, Inc., New York 1960Google Scholar
  91. 90.
    Gerischer, H.: Z. Phys. Chem. (Frankfurt) 26, 223 (1960; ibid. 27, 48 (1961)Google Scholar
  92. 91.
    Guastalla, J.: Nature 227, 485 (1970)CrossRefPubMedGoogle Scholar
  93. 92.
    Gavach, C., Mlodnicka, T., Guastalla, J.: C.R. Acad. Sci. Ser. C., 266, 1196 (1968)Google Scholar
  94. 93.
    Gavach, C., Henry, F.: J. Electroanal. Chem., 54, 361 (1975)CrossRefGoogle Scholar
  95. 94.
    Armstrong, R. D., Covington, A. K., Evans, G. P.: ibid. 159, 33 (1983)CrossRefGoogle Scholar
  96. 95.
    Armstrong, R. D., Covington, A. K., Evans, G. P., Handyside, T.: Electrochimica Acta, Vol. 29, No. 8, 1127 (1984)CrossRefGoogle Scholar
  97. 96.
    Nowak, P., Pomianowski, A.: paper presented at the 4th. scientific session on ion-selective electrodes, Matrafüred, Oct. 8–12, Hungary 1984; proceedings: Akadèmiài Kiado, Budapest, in pressGoogle Scholar
  98. 97.
    Turaeva, M. S., Lyalin, O. O.: ibid.Google Scholar
  99. 98.
    Lyalin, O. O., Turaeva, M. S.: ibid.Google Scholar
  100. 99.
    Samec, Z., Mareček, V., Koryta, J., Khalil, W: J. Electroanal. Chem. Interfacial Electrochem. 83, 393 (1977)Google Scholar
  101. 100.
    Koryta, J., Vanýsek, P.: in Advances in Electrochemistry and Electrochemical Engineering, ed. Gerischer, H., Tobias, C. W., Wiley-Interscience, New York, 1981, vol. 12, pp. 113–176Google Scholar
  102. 101.
    Koryta, J.: Electrochim. Acta 29, 445 (1984)CrossRefGoogle Scholar
  103. 102.
    Koryta, J.: Electrolysis at the interface of two Immiscible Electrolyte Solutions and its Analytical Aspects, in: Ion-Selective Electrodes. 3rd. Symposium held at Matrafüred, Hungary 1980, ed. Pundor, E., Elsevier, Amsterdam—Oxford—New York 1981Google Scholar
  104. 103.
    Oesch, U., Simon, W.: Anal. Chem. 52, 692 (1980)CrossRefGoogle Scholar
  105. 104.
    Cammann, K., Rechnitz, G. A.: paper presented at the 4th. scientific session on ion-selective electrodes, Matrafüred, Oct. 8–12, Hungary 1984; proceedings: Akadèmiài Kiado, Budapest, in pressGoogle Scholar
  106. 105.
    Stark, G.: Biochem. Biophys. Acta 600, 233 (1980)PubMedGoogle Scholar
  107. 106.
    Iljuschenko, M. A., Mirkin, W. A.: Chabarschysy Vestnik, Kasakstan academy of Science 4, 41 (1981)Google Scholar
  108. 107.
    Zubay, G.: Biochemistry, Addison-Wesley Publishing Company, Reading, Massachusetts, U.S.A. (1983)Google Scholar
  109. 108.
    Kostyuk, P. G.: Electrical events during active transport of ions through biological membranes, in: Topic in Bioelectrochemistry and Bioenergetics, Vol. 2, (ed.) Milàzzo, G., New York, Wiley 1978Google Scholar
  110. 109.
    Neumann, E.: Principles of electric field effects in chemical and biological systems, in: Topics in Bioelectrochemistry and Bioenergetics, Vol. 4, (ed.) Milazzo, G., New York, Wiley 1981Google Scholar
  111. 110.
    Jardetzky, O.: Nature, 211, 969 (1966)PubMedGoogle Scholar
  112. 111.
    Hodgkin, A. L., Huxley, A. F.: J. Physiol. (London) 116, 449; ibid. 117, 500 (1952)Google Scholar
  113. 112.
    Chizmadzhev, Yu. A., Pastushenko, V. F.: Mechanisms of Membrane Excitability, in: Topics in Bioelectrochemistry and Bioenergetics Vol. 2, (ed.) Milazzo, G., New York, Wiley 1978Google Scholar
  114. 113.
    Stewart, F. C.: Trans. Faraday Soc. 33, 1006 (1937)CrossRefGoogle Scholar
  115. 114.
    Booth, I. R., Mitchell, W. J., Hamilton, W. A.: Biochem. J. 182, 687 (1979)PubMedGoogle Scholar
  116. 115.
    Skou, J. C.: Mitochondria: biogenesis and bioenergetics, Biomembranes: molecular arrangements and transport mechanisms, Vol. 28, S. 39, North-Holland, American Elsevier 1972Google Scholar
  117. 116.
    Eisenman, G., Sandblom, J. P., Walker, J. L.: Science 155, 965 (1967)PubMedGoogle Scholar
  118. 117.
    Miller, I. R.: Structural and energetic aspects of charge transport in lipid layers and in biological membranes, in: Topics in Bioelectrochemistry and Bioenergetics, Vol. 4 (ed.) Milazzo, G., New York, Wiley 1981Google Scholar
  119. 118.
    Schiebe, M.: Dissertation Universität Ulm 1982Google Scholar
  120. 119.
    Leslie, R. B., Chapman, D., Hart, C. J.: Biochim. Biophys. Acta 135, 797 (1967)PubMedGoogle Scholar
  121. 120.
    Rosenberg, B., Jendrasiak, G. L.: Chem. Phys. Lipids 2, 47 (1968)CrossRefPubMedGoogle Scholar
  122. 121.
    Rosenberg, B.: Disc. Faraday Soc. 51, 1 (1971)CrossRefGoogle Scholar
  123. 122.
    Carmack, G. D., Freiser, H.: Anal. Chem. 45, 1977 (1973)CrossRefGoogle Scholar
  124. 123.
    Gavach, C. et al. in: Electrical Phenomenes at the Biological Membrane Level, p. 419 (ed.) Roux, E., Amsterdam, Elsevier 1976Google Scholar
  125. 124.
    Cope, F. W.: Physiol. Chem. Phys. 2, 545 (1970)Google Scholar
  126. 125.
    Hulanicki, A., Levenstam, A.: Talanta 24, 171 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Karl Cammann
    • 1
  1. 1.Department of Analytical ChemistryUniversity of UlmUlmGermany

Personalised recommendations