Advertisement

Chemical basis of ion transport specificity in biological membranes

  • Dan W. Urry
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 128)

Abstract

This review addresses the issues of the chemical and physical processes whereby inorganic anions and cations are selectively retained by or passed through cell membranes. The channel and carrier mechanisms of membranes permeation are treated by means of model systems. The models are: the planar lipid bilayer for the cell membrane, Gramicidin for the channel mechanism, and Valinomycin for the carrier mechanism.

With respect to the channel mechanism, the phenomenology of channel transport is noted; the molecular structure of the Gramicidin channel is briefly reviewed; the cation binding sites are located within the channel; using Eyring rate theory a free energy profile for ion transit through the channel is developed based on the location of the binding site and the determination of binding and rate constants by physical methods which are independent of the transport mechanism, and it is demonstrated that both binding site location and rate constants must be independently determined in order to achieve the unique description of ionic mechanism. It is shown that inorganic anion vs cation selectivity is the result of the chemical structure of polypeptides combined with conformational energetics of the channel; it is shown that monovalent vs multivalent cation selectivity is the result of the proximity of membrane lipid to the channel proper and properties are proposed for a divalent cation channel; and it is argued that selectivity among monovalent cations is enhanced by the conformation energetics of the channel. Furthermore, a formalism is given which leads to a means of evaluating thermodynamics relative to selectivity among monovalent cations.

With respect to the carrier mechanism, the phenomenology of the carrier transport of ions is discussed in terms of the criteria and kinetic scheme for the carrier mechanism; the molecular structure of the Valinomycin-potassium ion complex is considered in terms of the polar core wherein the ion resides and comparison is made to the Enniatin B complexation of ions; it is seen again that anion vs cation selectivity is the result of chemical structure and conformation; lipid proximity and polar component of the polar core are discussed relative to monovalent vs multivalent cation selectivity and the dramatic monovalent cation selectivity of Valinomycin is demonstrated to be the result of the conformational energetics of forming polar cores of sizes suitable for different sized monovalent cations.

It should be apparent that the principles of selective ion transport are independent of the specific models being treated here and that many of these principles are at variance with what were traditional views on the basis of selective membrane permeation by inorganic ions. Thus, the concept of selectivity among monovalent cations being based on values of hydrated radii is replaced by the demonstration that greater selectivity comes with increased dehydration. The perspective that hydration is the best way to lower ion self energy in order to pass through a protein component in a cell membrane is replaced by demonstration that peptide and ester carbonyls are far better solvators than water and that what is critical is the conformational energetics required to achieve adequate coordination. Furthermore, the earlier prevalent view that the repulsive image force due to the presence of the lipid layer would cause the rate limiting barrier to be in the middle of the membrane is shown to be entirely incorrect for monovalent cations but relevant indeed to multivalent cations. It should also be appreciated that there are other physiocochemical data available from these model systems such as the repulsion between ions at a known distance and separated by a string of water molecules and such as the energetics of lipid membrane deformation. Such information while relevant to the mechanisms of selective permeation of cell membranes has a more general and widespread application.

Keywords

Carbonyl Oxygen Monovalent Cation Lipid Bilayer Membrane Single Channel Conductance Polar Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

V References

  1. 1.
    Cotton, F. A., Wilkinson, G.: Advanced Inorganic Chemistry, A Comprehensive Text, p. 321, Interscience Publishers, 1962Google Scholar
  2. 2.
    Born, M.: Z. Physik. 1, 45 (1920)CrossRefGoogle Scholar
  3. 3.
    Fettiplace, R., Andrews, D. M., Haydon, D. A.: J. Membrane Biol. 5, 277 (1971)CrossRefGoogle Scholar
  4. 4.
    Bamberg, E., Lauger, P.: Biochim. Biophys. Acta 367, 127 (1974)PubMedGoogle Scholar
  5. 5.
    Benz, R., Lauger, P.: J. Membr. Biol. 27, 171 (1976)CrossRefPubMedGoogle Scholar
  6. 6.
    Urry, D. W.: Ann. NY Acad. Sci. 307, 3 (1978)PubMedGoogle Scholar
  7. 7.
    Hladky, S. B., Haydon, D. A.: Nature 225, 451 (1970)CrossRefPubMedGoogle Scholar
  8. 8.
    Hladky, S. B., Haydon, D. A.: Biochim. Biophys. Acta 274, 294 (1972)PubMedGoogle Scholar
  9. 9.
    Mueller, P., Rudin, D. O.: Biochem. Biophys. Res. Commun. 26, 398 (1967)CrossRefPubMedGoogle Scholar
  10. 10.
    Bradley, R. J., Prasad, K. U., Urry, D. W.: Biochim. Biophys. Acta 649, 281 (1981)PubMedGoogle Scholar
  11. 11.
    Szabo, G., Urry, D. W.: Science 203, 55 (1979)PubMedGoogle Scholar
  12. 12.
    Urry, D. W., Alonso-Romanowski, S., Bradley, R. J.: in preparationGoogle Scholar
  13. 13.
    Prasad, K. U., Trapane, T. L., Busath, D., Szabo, G., Urry, D. W.: Int. J. Pept. Protein Res. 19(2), 162 (1982)PubMedGoogle Scholar
  14. 14.
    Kolb, H.-A., Lauger, P., Bamberg, E.: J. Membrane Biol. 20, 133 (1975)CrossRefGoogle Scholar
  15. 15.
    Zingsheim, H. P., Neher, E.: Biophys. Chem. 2, 197 (1974)CrossRefPubMedGoogle Scholar
  16. 16.
    DeFelice, L. J.: Int. Rev. Neurobiol. 20, 169 (1977)PubMedGoogle Scholar
  17. 17.
    Sarges, R., Witkop, B.: Biochemistry 4, 2491 (1965)CrossRefGoogle Scholar
  18. 18.
    Fontana, A., Gross, E.: Peptides, Proc. of the 12th Eur. Peptide Symp., p. 229, 1972Google Scholar
  19. 19.
    Noda, K., Gross, E.: Chemistry and Biology of Peptides, (ed. Meienhofer, J.), p. 241, Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan 1972Google Scholar
  20. 20.
    Hunter, F. E., Jr., Schwartz, L. S.: Antibiotics, Vol. I: Mechanism of Action (ed. Gottlieb, D., Shaw, P. D.), p. 636, Springer-Verlag New York Inc., 1967Google Scholar
  21. 21.
    Urry, D. W.: Proc. Natl. Acad. Sci. USA 68, 672 (1971)PubMedGoogle Scholar
  22. 22.
    Urry, D. W. et al.: ibid. 68, 1907 (1971)PubMedGoogle Scholar
  23. 23.
    Urry, D. W.: Coformation of Biological Molecules and Polymers — The Jerusalem Symposia on Quantum Chemistry and Biochemistry, V, (eds. Bergman, E. D., Pullman, B.), p. 723, Jerusalem, Israel Academy of Sciences 1973Google Scholar
  24. 24.
    Ramachandran, G. N., Chandrasekharan, R.: Progress in Peptide Research — Volume II (ed. Lande, S.), p. 195, Gordon and Breach, Science Publishers, Inc., New York 1972Google Scholar
  25. 25.
    Ramachandran, G. N., Chandrasekaran, R.: Indian J. Biochem. Biophys. 9, 1 (1972)PubMedGoogle Scholar
  26. 26.
    Urry, D. W. et al.: Ann. NY Acad. Sci. 264, 203 (1975)PubMedGoogle Scholar
  27. 27.
    Veatch, W. R., Blout, E. R.: Biochemistry 13, 5257 (1974)CrossRefPubMedGoogle Scholar
  28. 28.
    Weinstein, S. et al.: Proc. Natl. Acad. Sci. USA 76, 2402 (1979)Google Scholar
  29. 29.
    Bamberg, E., Apell, H.-J., Aples, H.: A. J. 74, 2402 (1977)Google Scholar
  30. 30.
    Sychev, S. V., Ivanov, V. T.: Membranes and Transport Vol. 2, (ed. Martonosi, A. N.), p. 301, Plenum Press, New York 1982Google Scholar
  31. 31.
    Ovchinnikov, Y. A., Ivanov, V. T.: Conformation in Biology (eds. Srinivasan, R., Sarma, R. H.), p. 155, Adenine Press, Guilderland, New York 1982Google Scholar
  32. 32.
    Urry, D. W.: The Enzymes of Biological Membranes (ed. Martonosi, A. N.), Plenum Press, New York, in pressGoogle Scholar
  33. 33.
    Urry, D. W., Spisni, A., Khaled, M. A.: Biochem. Biophys. Res. Commun. 88(3), 940 (1979)CrossRefPubMedGoogle Scholar
  34. 34.
    Urry, D. W. et al.: Int. J. Pept. Protein Res., 21, 16 (1983)PubMedGoogle Scholar
  35. 35.
    Ohnishi, M. et al.: Biochem. Biophys. Res. Commun. 46, 313 (1972)Google Scholar
  36. 36.
    Urry, D. W.: Nuclear magnetic resonance and the conformation of membrane-active peptides. In: Enzymes of Biological Membranes, Vol. 1, (ed. Martonosi, A.), p. 31, Plenum Publishing Corp., New York 1976Google Scholar
  37. 37.
    Urry, D. W., Prased, K. U., Trapane, T. L.: Proc. Natl. Acad. Sci. USA 79, 390 (1982)PubMedGoogle Scholar
  38. 38.
    Urry, D. W., Walker, J. T., Trapane, T. L.: J. Membr. Biol. 69, 225 (1982)CrossRefPubMedGoogle Scholar
  39. 39.
    Urry, D. W., Trapane, T. L., Prasad, K. U.: Science, in pressGoogle Scholar
  40. 40.
    Busath, D., Szabo, G.: Nature 294, 371 (1981)CrossRefPubMedGoogle Scholar
  41. 41.
    Koeppe, R. E., II et al.: Nature (London) 279, 723 (1979)CrossRefPubMedGoogle Scholar
  42. 42.
    Zwolinski, B. I., Eyring, H., Reese, C. E.: J. Phys. Chem. 53, 1426 (1949)CrossRefGoogle Scholar
  43. 43.
    Parlin, B., Eyring, H.: Ion Transport Across Membranes (ed. Clarke, H. T.), p. 103, Academic, New York 1954Google Scholar
  44. 44.
    Eyring, H., Urry, D. W.: Ber. Bunsenges. Phys. Chem. 67, 731 (1963)Google Scholar
  45. 45.
    Urry, D. W.: On the Molecular Structure and Ion Transport Mechanism of the Gramicidin Transmembrane Channel. In: Membranes and Transport, Vol. 2, (ed. Martonosi, A.), p. 285, Plenum Publishing Corporation, New York 1982Google Scholar
  46. 46.
    Urry, D. W., et al.: Proc. Natl. Acad. Sci. USA 77, 2028 (1980)PubMedGoogle Scholar
  47. 47.
    Urry, D. W., et al.: J. Membr. Biol. 55, 29 (1980)CrossRefPubMedGoogle Scholar
  48. 48.
    James, T. L., Noggle, J. H.: Proc. Natl. Acad. Sci. USA 62, 644 (1969)PubMedGoogle Scholar
  49. 49.
    Urry, D. W., et al.: J. Phys. Chem. in pressGoogle Scholar
  50. 50.
    Urry, D. W., et al.: in preparationGoogle Scholar
  51. 51.
    Venkatachalam, C. M., Urry, D. W.: J. Magn. Resonance 41, 313 (1980)Google Scholar
  52. 52.
    Henze, R., et al.: J. Membr. Biol. 64 (3), 233 (1982)CrossRefPubMedGoogle Scholar
  53. 53.
    Venkatachalam, C. M., Urry, D. W.: J. Comput. Chem., in pressGoogle Scholar
  54. 54.
    Momany, F. A., et al.: J. Phys. Chem. 78, 1595 (1974)CrossRefGoogle Scholar
  55. 55.
    Momany, F. A., et al.: ibid. 79, 2361 (1975)CrossRefGoogle Scholar
  56. 56.
    Venkatachalam, C. M., Urry, D. W.: J. Comput. Chem., in pressGoogle Scholar
  57. 57.
    Myers, V. B., Haydon, D. A.: Biochim. Biophys. Acta 274, 313 (1972)PubMedGoogle Scholar
  58. 58.
    Bamberg, E., Kolb, H.-A., Lauger, P.: in The Structural Basis of Membrane Function (ed. Hatefi, Y.), p. 143, Academic Press, New York 133–167Google Scholar
  59. 59.
    Eisenman, G., Sandblom, J., Neher, E.: Biophys. J. 22 (2), 307 (1978)PubMedGoogle Scholar
  60. 60.
    Eisenman, G., Sandblom, J., Neher, E.: Metal-Ligand Interactions in Organic Chemistry and Biochemistry, Part 2, (eds. Pullman, B., Goldblum, N.), p. 1, D. Reidel, Dordrecht-HollandGoogle Scholar
  61. 61.
    Bamberg, E., Lauger, P.: J. Membrane Biol. 35, 351 (1977)CrossRefGoogle Scholar
  62. 62.
    Urry, D. W., et al.: J. Biol. Chem. 257, 6659 (1982)PubMedGoogle Scholar
  63. 63.
    Urry, D. W., Trapane, T. L., Prasad, K. U.: Int. J. Quantum Chem.: Quantum Biology Symp. No. 9, 31 (1982)Google Scholar
  64. 64.
    Hinton, J. F., Turner, G. L., Millett, F. S.: J. Magnetic Res. 45, 42 (1981)Google Scholar
  65. 65.
    Rosseinsky, D. R.: Chem. Rev. 65, 467 (1965)CrossRefGoogle Scholar
  66. 66.
    Stokes, R. H.: J. Am. Chem. Soc. 86, 979 (1964)CrossRefGoogle Scholar
  67. 67.
    Noyes, R. M.: ibid. 84, 513 (1962)CrossRefGoogle Scholar
  68. 68.
    Urry, D. W.: Frontiers of Biological Energetics, Vol. 2 (eds. Dutton, P. L., Leigh, J., Scarpa, A.), p. 1227, Academic Press, New York 1978Google Scholar
  69. 69.
    Potter, J. D., Gergely, J.: J. Biol. Chem. 250, 4628 (1975)PubMedGoogle Scholar
  70. 70.
    Cox, J. A., Wnuk, W., Stein, E. A.: Calcium Binding Proteins and Calcium Function (eds. Wasserman, R. H., Corradion, R. A., Carafoli, E., Kretsinger, R. H., MacLennan, D. H., Siegel, F. L.), p. 266, Elsevier/North Holland, New York 1977Google Scholar
  71. 71.
    Krasne, S., Eisenman, G.: Membranes, Vol. 2, Lipid Bilayer And Antibiotics (ed. Eisenman, G.), p. 273, Marcel Dekker, Inc. New York 1973Google Scholar
  72. 72.
    Lauger, P.: J. Membrane Biol. 57, 163 (1980)CrossRefGoogle Scholar
  73. 73.
    Urry, D. W., Alonso-Romanowski, S., Bradley, R. J.: in preparationGoogle Scholar
  74. 74.
    Stefanac, Z., Simon, W.: Chimia (Switzerland) 20, 436 (1966)Google Scholar
  75. 75.
    Pioda, L. A. R., Stankova, V., Simon, W.: Anal. Lett. 7, 665 (1969)Google Scholar
  76. 76.
    Simon, W., Morf, W.: Membranes — A Series of Advances, Vol. 2, p. 29, (ed. Eisenman, G., Dekker, New York 1973Google Scholar
  77. 77.
    Dzidic, I., Kebarle, P.: J. Phys. Chem. 74, 1466 (1970)CrossRefGoogle Scholar
  78. 78.
    Arshadi, M., Yamdagni, R., Kebarle, P.: ibid. 74, 1475 (1970)CrossRefGoogle Scholar
  79. 79.
    Kistenmacher, H., Popkie, H., Clementi, E.: J. Chem. Phys. 61, 799 (1974)CrossRefGoogle Scholar
  80. 80.
    Kistenmacher, H., Popkie, H., Clementi, E.: ibid. 58, 1689 (1973)CrossRefGoogle Scholar
  81. 81.
    Mezei, M., Beveridge, D. L.: ibid. 74 (1), 622 (1981)CrossRefGoogle Scholar
  82. 82.
    Mezei, M., Beveridge, D. L.: ibid. 74 (12), 6902 (1981)CrossRefGoogle Scholar
  83. 83.
    Balasubramanian, D., Misra, B. C.: Biopolymers 14, 1019 (1975)CrossRefPubMedGoogle Scholar
  84. 84.
    Pressman, B. C.: Fed. Proc. 32, 1698 (1973)PubMedGoogle Scholar
  85. 85.
    Pinkerton, M., Steinruf, L. K., Dawkins, K.: Biochem. Biophys. Res. Commun. 35, 512 (1969)CrossRefPubMedGoogle Scholar
  86. 86.
    Mueller, P., et al.: J. Phys. Chem. 67, 534 (1963)Google Scholar
  87. 87.
    Lauger, P.: Science 178, 24 (1972)PubMedGoogle Scholar
  88. 88.
    Stark, G., Benz, R.: J. Membr. Biol. 5, 133 (1971)CrossRefGoogle Scholar
  89. 89.
    Ketterer, B., Neumcke, B., Lauger, P.: ibid. 5, 225 (1971)CrossRefGoogle Scholar
  90. 90.
    Neumcke, B., Lauger, P.: Biophys. J. 9, 1160 (1969)PubMedGoogle Scholar
  91. 91.
    Lauger, P., Stark, G.: Biochim. Biophys. Acta 211, 458 (1970)PubMedGoogle Scholar
  92. 92.
    Stark, G., et al.: Biophys. J. 11, 981 (1971)PubMedGoogle Scholar
  93. 93.
    Krasne, S., Eisenman, G., Szabo, G.: Science 174, 412 (1971)PubMedGoogle Scholar
  94. 94.
    Shemyakin, M. M., et al.: Experimentia 21, 548 (1965)CrossRefGoogle Scholar
  95. 95.
    Urry, D. W.: J. Phys. Chem. 72, 3035 (1968)CrossRefGoogle Scholar
  96. 96.
    Ohnishi, M., Urry, D. W.: Biochem. Biophys. Res. Commun. 36, 194 (1969)CrossRefPubMedGoogle Scholar
  97. 97.
    Urry, D. W., Ohnishi, M.: Spectroscopic Approaches to Biomolecular Conformation, p. 263, (ed. Urry, D. W.), American Medical Association Press, Chicago, Illinois 1970Google Scholar
  98. 98.
    Ohnishi, M., Urry, D. W.: Science 168, 1091 (1970)PubMedGoogle Scholar
  99. 99.
    Mayers, D. F., Urry, D. W.: J. Am. Chem. Soc. 94, 77 (1972)CrossRefPubMedGoogle Scholar
  100. 100.
    Neupert-Laves, K., Dobler, M.: Helv. Chim. Acta 58, 432 (1975)CrossRefPubMedGoogle Scholar
  101. 101.
    Urry, D. W.: Enzymes of Biological Membranes, Vol. 1, (ed. Martonosi, A.), p. 31, Plenum Publishing Corp., New York, New York 1976Google Scholar
  102. 102.
    Plattner, PL. A., et al.: Helv. Chim. Acta 46, 927 (1963)Google Scholar
  103. 103.
    Dobler, M., Dunitz, J. D., Krajewski, J.: J. Mol. Biol. 42, 603 (1969)CrossRefPubMedGoogle Scholar
  104. 104.
    Shemyakin, M. M., et al.: J. Membr. Biol. 1, 402 (1969)CrossRefGoogle Scholar
  105. 105.
    Bystrov, V. F., ett al.: Eur. J. Biochem. 78, 63 (1977)CrossRefPubMedGoogle Scholar
  106. 106.
    Benz, R.: J. Membr. Biol. 43, 367 (1978)CrossRefPubMedGoogle Scholar
  107. 107.
    Fiedler, U., Ruzicka, J.: Anal. Chim. Acta 67, 179 (1973)CrossRefGoogle Scholar
  108. 108.
    Ivanov, V. T.: Ann. N.Y. Acad. Sci. 264, 221 (1975)PubMedGoogle Scholar
  109. 109.
    Grell, E., Funck, Th.: J. Supramol. Structure 1, 307 (1973)CrossRefGoogle Scholar
  110. 110.
    Funck, Von Th., Eggers, F., Grell, E.: Chimia 26, 637 (1972)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Dan W. Urry
    • 1
  1. 1.Laboratory of Molecular BiophysicsUniversity of Alabama in Birmingham, School of MedicineBirminghamUSA

Personalised recommendations