Advertisement

Numerical simulation of unsteady flowfields near bodies in nonuniform oncoming stream

  • L. I. Turchak
  • V. F. Kamenetsky
Contributed Papers 9th International Conference on Numerical Methods in Fluid Dynamics (1984, June, France, Cen-Saclay)
Part of the Lecture Notes in Physics book series (LNP, volume 218)

Abstract

Inviscid flowfields near blunt bodies travelling at supersonic speeds in ideal gas atmosphere containing various discontinuities (shock, explosion, rtc.) are discussed, The problems are solved numerically by grid — characteristic method (GC-method) L1, 21. The results of axisymmetrical and three-dimensional difraction of plane shocks on travelling bodies of different shapes and axisymmenrical interaction of the travelling body with an explosion wave are presented. Obtained data fully reflect all physical phenomena accompanying such interactions and are shown to agree well with the available experimental evidence.

Keywords

Mach Number Front Shock Stagnation Point Rarefaction Wave Contact Discontinuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maгoмeдoв К.M. Ceтoчнo-xapaктepиcтичecкий мeтoд для чиcлeниoгo peшeния зaдaч гaзoвoй динaмики. Tруды Ceкции пo чиcлeнным мeтoдам в гaзoвoй динaмикe П Мeждунapoднoгo кoллoквиумa пo гaзoдинaмикe взpывa и peaгиpующиx cиcтeм (Hoвocибиpcк, 1969 r.), т. I. M., ВЦ AH CCCP, 1969.Google Scholar
  2. 2.
    Чиcлeвиoe иccлeдoвaниe coвpemeнныx зaдaч гaзoвoй динaмики. Peд. Ъeлoцepкoвcкий O.M. M., “Нaукa”, 1974.Google Scholar
  3. 3.
    Lin T.C., Beeves B.L., Siegelman B. Blunt-body problem in nonuniform flowfields. AIAA Journal, 1977, v. 15, N 8.Google Scholar
  4. 4.
    Кaмeнeцкий В.Ф., Tуpчaк Л.И. Cвepxзвукoвoe oбтeкaниe тeл нeoднopoдным пoтoкoм идeaльнoгo гaзa. M., ВЦ AН CCCP, 1982.Google Scholar
  5. 5.
    Taylor r T. D., Hu dgin s H. E. Interaction of a blast wove with a blunt body travelling at supersonic speeds. AIAA Journal, 1968, v. 6, N 2.Google Scholar
  6. 6.
    Apутынян Г.M. Кpacчeту дaвлeния в кpитичecкoй тoчкe пpи нaдeнии удapнoй вoлны нa тeлo, движущeecя co cвepxзукoвoй cкopocтъы. Изв. AИ CCCP, MжГ, 1972, № 6.Google Scholar
  7. 7.
    Бaлaкин B. Б., Буxмaнoв B. B. Чиcлeннoe peшeниe зaдaчи o взaимoдeйcтвии уdapнoй вoлны c цилиндpoм в cвepxзвукoвoм пoтoкe. ИФЖ, 1971, № 6.Google Scholar
  8. 8.
    Tугaзaкoв P.Л. Дифpaкция удapнoй вoлны нa движушeмcя клинe. Учeныe зaниcки ЦAГИ, 1975, т. 6, № 1.Google Scholar
  9. 9.
    Липницкий Ю.M., Ляxoв В.И. Взaимoдeйcтвиe удapнoй вoлны c клинoм в cвepxзвукoвoм пoтoкe. Учeныe зaпиcки ЦAГИ, 1976, т. 7, № 4.Google Scholar
  10. 10.
    Champney J.M., Chaussec D.S., Kutler P. Computation of blastwave-obstacle interactions. AIAA Pap., 1982, N 227.Google Scholar
  11. 11.
    Zanetti L., Moretti G. Numerical experiments on the leading-edge flowfield. AIAA Journal, 1982, v. 20, N 12.Google Scholar
  12. 12.
    Б Кecтeнбoйм X.C., Pocлякoв Г.C., Чудoв Л.A. Toчэчный взpыв. (Meтoды pacчeтa. Тaблицы). M., “Нaукa”, 1974.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • L. I. Turchak
    • 1
  • V. F. Kamenetsky
    • 1
  1. 1.Comput. Centre, Acad. of Sci.MoscowUSSR

Personalised recommendations