Advertisement

A three-dimensional incompressible primitive variable Navier-Stokes procedure with no poisson solver

  • T. D. Taylor
  • M. M. Nadworny
  • R. S. Hirsh
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 218)

Keywords

Poisson Equation Boundary Layer Stability POISSON Solver Blasius Boundary Layer Time Dependent Partial Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Taylor, T. D., and Murdock, J. W., Application of Spectral Methods to the Solution of Navier-Stokes Equations, in Approximations Methods for Navier-Stokes Problems, Lecture Notes in Mathematics, Vol. 771, pp. 529–537, Springer-Verlag, Berlin, 1980.Google Scholar
  2. [2]
    Peyret, R., and Taylor, T. D., Computational Methods for Fluid Flow, Springer, New York, 1982.Google Scholar
  3. [3]
    Gottlieb, D., and Turkel, E., Spectral Methods for Time Dependent Partial Differential Equations, NASA CR 172241, 1983.Google Scholar
  4. [4]
    Hirsh, R. S., Taylor, T. D., and Nadworny, M. M., An Implicit Predictor-Corrector Method for Real Space Chebyshev PseudoSpectral Integration of Parabolic Equations, Comp. Fluids, 11, 251–254, 1983.CrossRefGoogle Scholar
  5. [5]
    Taylor, T. D., Hirsh, R. S., and Nadworny, M. M., Comparison of FFT, Direct Inversion and Conjugate Gradient Methods for use in Pseudo-Spectral Methods, Comp. Fluids, 12, 1–10, 1984.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • T. D. Taylor
    • 1
  • M. M. Nadworny
    • 1
  • R. S. Hirsh
    • 1
  1. 1.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA

Personalised recommendations