Higher-order method of lines for the numerical simulation of turbulence

  • Nobuyuki Satofuka
  • Haruyoshi Nakamura
  • Hidetoshi Nishida
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 218)


A new method is devised for the numerical simulation of turbulences. The spatial derivatives of the time-dependent incompressible Navier-Stokes equations are discretized by using the modified differential quadrature (MDQ) method. The resulting system of ordinary differential equations in time are then integrated by a class of fourth order explicit Runge-Kutta schemes. The simulations of two and three-dimensional homogeneous isotropic turbulence suggest that the present method is more efficient and versatile than the pseudospectral method.


Spatial Derivative Burger Equation Pseudospectral Method Vorticity Equation Approximate Relation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Herring, J.R., Orszag, S.A., Kraichman, R.H. and Fox, D.G, 1974, J. Fluid Mech., 66, 417–444.Google Scholar
  2. [2]
    Fox, D.G. and Orszag, S.A., 1973, J. Comp. Phys., 11, 612–619.CrossRefGoogle Scholar
  3. [3]
    Fornberg, B., 1977, J. Comp. Phys., 25, 1–31.CrossRefGoogle Scholar
  4. [4]
    Satofuka, N. and Morinishi, K., 1982, NASA TM 81339.Google Scholar
  5. [5]
    Bellman, R., Kashef, B.G. and Casti, J., 1972, J. Comp. Phys., 10, 40–52.CrossRefGoogle Scholar
  6. [6]
    Williamson, J.H., 1980, J. Comp. Phys., 35, 48–56.CrossRefGoogle Scholar
  7. [7]
    Orszag, S.A. and Patterson, G.S., 1971, Lecture Notes in Physics, vol. 12, 127–147.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Nobuyuki Satofuka
    • 1
  • Haruyoshi Nakamura
    • 1
  • Hidetoshi Nishida
    • 1
  1. 1.Department of Mechanical EngineeringKyoto Technical UniversityKyotoJapan

Personalised recommendations