Advertisement

A comparison of finite difference and characteristic Galerkin methods for shock modelling

  • K. W. Morton
  • P. K. Sweby
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 218)

Keywords

Order Scheme Shock Modelling Spurious Oscillation Sonic Point Flux Limiter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BORIS, J.P. & BOOK, D.L., JCP 11, pp. 38–69, 1973.Google Scholar
  2. [2]
    BRENIER, Y., INRIA Rapports de Recherche No. 53, 1981.Google Scholar
  3. [3]
    CHAKRAVARTHY, S. & OSHER, S., AIAA 6th Comp. Fluid Dynamics Conf. 1983.Google Scholar
  4. [4]
    ENGQUIST, B. & OSHER, S., Math. Comp. Vol. 34, No. 149, pp.45–75, 1980.Google Scholar
  5. [5]
    HARTEN, A., JCP 49, pp. 357–393, 1983.Google Scholar
  6. [6]
    MORTON, K.W., Proc. IC8NMFD, Lect. Notes in Physics 170, pp. 77–93, 1982.Google Scholar
  7. [7]
    MORTON, K.W., Proc. 5th GAMM Conf., pp. 243–250, 1983.Google Scholar
  8. [8]
    OSHER, S., SIAM Journal on Num. Analysis 21 No. 2, 1984.Google Scholar
  9. [9]
    ROE, P.L., Numerical Methods for Fluid Dynamics, Academic Press, 1982.Google Scholar
  10. [10]
    ROE, P.L. & BAINES, M.J., Proc. 4th GAMM conf., pp. 281–290, 1981.Google Scholar
  11. [11]
    SWEBY, P.K., SIAM Journal on Num. Analysis 21, No. 5, 1984.Google Scholar
  12. [12]
    SWEBY, P.K., Proc. AMS-SIAM Summer Seminar, La Jolla, California, 1983.Google Scholar
  13. [13]
    VAN LEER, B., JCP 14, pp. 361–370, 1974.Google Scholar
  14. [14]
    VAN LEER, B., JCP 32, pp. 101–136, 1979.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • K. W. Morton
    • 1
  • P. K. Sweby
    • 1
  1. 1.Oxford University Computing LaboratoryOxford

Personalised recommendations