A second-order accurate flux splitting scheme in two-dimensional gasdynamics

  • J. L. Montagné
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 218)


The domain of application of the proposed method is mainly unsteady flows with complex geometries. The scheme results from a combination of a spatial approximation, an upwind flux computation, and a time integration. W e have proposed a Riemann solver for flux computation because it seems to be less dependent on the homogeneity property of the flux ; but many techniques are suitable [3, 5, 8, 10], and the flux splitting techniques proposed by Van Leer seem advantageous for their computational efficiency. The scheme could also be used on a triangular finite element grid and the time integration could be improved. A three-dimensional extension is under investigation.


Transonic Flow Riemann Solver Spatial Approximation Sonic Point Total Variation Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. D. Van Albada, B. Van Leer, W.W. Roberts: “Comparative study of computational methods in cosmic gas dynamics”. ICASE Reports No 81-24, August 3, 1981.Google Scholar
  2. [2]
    M. Borrel, Ph Morice: “A second order Lagrangian-eulerian method for computation of two-dimensional unsteady transonic flows”. 5th GAMM Conf. Rome 1983.Google Scholar
  3. [3]
    P. Harten, P. Lax, B. Van Leer: “On upstream differencing and Godunov type schemes for hyperbolic conservation laws”. STAM Review, Vol. 25, No 1 Jan. 1983.Google Scholar
  4. [4]
    B. Van Leer: “V. A second order sequel to Godunov method”. J C P 23 276–299, 1977.Google Scholar
  5. [5]
    B. Van Leer: “Flux vector splitting for the Euler equations”. VKI 1983.Google Scholar
  6. [6]
    A.Y. Leroux: “Approximation de quelques problmes hyperboliques non linéaires”. Thesis, Rennes University, April 1974.Google Scholar
  7. [7]
    S. Osher: “Convergence of generalized MUSCL schemes”. ICASE Report 172306, Feb. 1984.Google Scholar
  8. [8]
    P.L. Roe: “Approximate Riemann solvers, parameter vectors and difference schemes”. J C P 43 357–372 (1981).Google Scholar
  9. [9]
    J.P. Veuillot, H. Viviand: “Méthodes pseudo-instationnaires pour le calcul d'écoulements transsoniques”. ONERA publication N° 1978-4 (English translation, ESA-TT-561).Google Scholar
  10. [10]
    G. Vijayasundaram: “Résolution numérique des équations d'Euler pour des écoulements transsoniques avec un schéma de Godunov en éléments finis”. The., Paris VII, Oct. 1982.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. L. Montagné
    • 1
  1. 1.Office National d'Etudes et de Recherches AérospatialesChatillon cedexFrance

Personalised recommendations