Viscous computation of a space shuttle flow field

  • D. S. Chaussee
  • Y. M. Rizk
  • P. G. Buning
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 218)


Shock Wave AIAA Paper Space Shuttle Subsonic Flow Inviscid Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Venkatapathy, E., Rakich, J. V., and Tannehill, J. C., “Numerical Solution of Supersonic Viscous Flow over Blunt Delta Wings,” AIAA Paper 82-0028, 1982.Google Scholar
  2. 2.
    Prabhu, D. K. and Tannehill, J. C., “Numerical Solution of Space Shuttle Orbiter Flow Field Including Real Gas Effects,” AIAA Paper 84-1747, 1984.Google Scholar
  3. 3.
    Balakrishnan, A., “Computation of Viscous Real Gas Flow Field for the Space Shuttle Orbiter,” AIAA Paper 84-1748, 1984.Google Scholar
  4. 4.
    Li, C. P., “Application of an Implicit Technique to the Shock-Layer Flow Around General Bodies,” AIAA Journal, Vol. 20, 1982, p. 175.Google Scholar
  5. 5.
    Szema, K. Y., Griffith, B. J., Maus, J. R., and Best, J. T., “Laminar Viscous Flow Field Prediction of Shuttle-like Vehicle Aerodynamics,” AIAA Paper 83-0211, 1983.Google Scholar
  6. 6.
    Weilmuenster, K. J., “High Angle of Attack Inviscid Flow Calculations Over a Shuttle-like Vehicle with Comparisons to Flight Data,” AIAA Paper 83-1798, 1983.Google Scholar
  7. 7.
    Weilmuenster, K. J. and Hamilton, H. H., “Calculations of Inviscid Flow Over Shuttle-like Vehicles at High Angles of Attack and Comparisons with Experimental Data,” NASA TP-2103, 1983.Google Scholar
  8. 8.
    Chaussee, D. S., Kutler, P., and Holtz, T., “Inviscid Supersonic/Hypersonic Body Flow Field and Aerodynamics from Shock-Capturing Technique Calculations,” Journal of Spacecraft & Rockets, Vol. 13, 1976, pp. 325–331.Google Scholar
  9. 9.
    Rai, M. M. and Chaussee, D. S., “New Implicit Boundry Procedures: Theory and Applications,” AIAA Paper 83-0123, 1983.Google Scholar
  10. 10.
    Rai, M. M., Chaussee, D. S., and Rizk, Y. M., “Calculation of Viscous Supersonic Flows over Finned Bodies,” AIAA Paper 83-1667, 1983.Google Scholar
  11. 11.
    Rizk, Y. M. and Chaussee, D. S., “Three-Dimensional Viscous-Flow Computations Using a Directionally Hybrid Implicit-Explicit Procedure,” AIAA Paper 83-1785, 1983.Google Scholar
  12. 12.
    Schiff, L. B. and Steger, J. L., “Numerical Simulation of Steady Supersonic Viscous Flow,” AIAA Paper 79-0130, 1979.Google Scholar
  13. 13.
    Steger, J. L. and Sorenson, R. L., “Automatic Mesh-Point Clustering Near a Boundary in Grid Generation with Elliptic Partial Differential Equations,” Journal of Computational Physics, Vol. 33, 1979, pp. 405–410.CrossRefGoogle Scholar
  14. 14.
    Kutler, P., Pedelty, J. A., and Pulliam, T. H., “Supersonic Flow Over Three-Dimensional Ablated Nosetips using an Unsteady Implicit Numerical Procedure,” AIAA Paper 80-0063, 1980.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • D. S. Chaussee
    • 1
  • Y. M. Rizk
    • 1
  • P. G. Buning
    • 1
  1. 1.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations