Free decay of high reynolds number two dimensional turbulence

  • M. E. Brachet
  • P. L. Sulem
Contributed Papers
Part of the Lecture Notes in Physics book series (LNP, volume 218)


The free decay of high Reynolds two dimensional turbulence is simulated by direct numerical intergration of the Navier-Stokes equations at a resolution of 1024 x 1024 with symmetric random initial conditions. The following scenario is observed : At early times, large scale straining generates quasi-rectilinear vorticity gradient sheets with thickness decaying exponentially in time until dissipation becomes relevant.In Fourier space, the energy spectrum displays a k−n - range with n − 4, in agreement with Saffman's theory. Close to the time of maximum enstrophy dissipation, we observe a transition to an n − 3 inertial range, consistent which the Batchelor-Kraichnan theory of enstrophy cascade. In this regime, vorticity gradients are distributed on convoluted secondary dissipative structures resulting from folding and reconnection of early time sheets.


Energy Spectrum Spectral Exponent Free Decay Cascade Theory Vorticity Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basdevant, C., Legras, B., Sadourny, R. and Beland, M. (1981), J. Atm. Sc. 38, 2305.CrossRefGoogle Scholar
  2. Batchelor, G.K. (1969), Phys. Fluids 12, 233.CrossRefGoogle Scholar
  3. Brachet, M.E. (1983), Thèse d'Etat, Université de Nice.Google Scholar
  4. Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morf, R.H., Frisch, U. (1983), J. Fluid. Mech. 130, 411.Google Scholar
  5. Brachet,M.E. and Sulem, P.L. (1984): in Proc. 4th Beer Sheva of MHD flows and turbulence. AIAA Progress in Astronautics and Aeronautics. To be published.Google Scholar
  6. Herring, J.R., Orszag, S.A., Kraichnan, H.R. and Fox, D.G. (1974), J. Fluid Mech. 66, 417.Google Scholar
  7. Kraichnan, H.R. (1967), Phys. Fluids 10, 1417.CrossRefGoogle Scholar
  8. Kraichnan, H.R. (1971), J. Fluid Mech. 47, 525.Google Scholar
  9. Kraichnan, H.R. (1975), J. Fluid.Mech. 67, 155.Google Scholar
  10. Lilly, D.K. (1969), Phys. Fluids Suppl. 12, II, 240.Google Scholar
  11. McWilliams, J.C. (1983), The emergence of isolated, coherent vortices in turbulent flow. Preprint.Google Scholar
  12. Orszag, S.A. (1977): in Proc. 5th Int. Conf. on Numerical Methods in Fluid Mechanics p. 32. Springer Lecture Notes in Physics, 59.Google Scholar
  13. Saffman, R.G. (1971), Studies in Appl. Math. 50, 377.Google Scholar
  14. Weiss, J. (1981), The Dynamics of enstrophy transfer in two-dimensional hydrodynamics, La Jolla Inst. La Jolla, CA, LJI-TN-81-121.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • M. E. Brachet
    • 1
  • P. L. Sulem
    • 2
  1. 1.CNRS, Observatoire de NiceFrance
  2. 2.School of Mathematical SciencesTel Aviv University Israel and CNRS Observatoire de NiceFrance

Personalised recommendations