Advertisement

Topics in the numerical simulation of high temperature flows

  • R. Chéret
  • R. Dautray
  • J. C. Desgraz
  • B. Mercier
  • G. Meurant
  • J. Ovadia
  • B. Sitt
Invited Lectures
Part of the Lecture Notes in Physics book series (LNP, volume 218)

Abstract

We review some numerical methods used in the field of multifluid flows, radiation hydrodynamics, detonation and instability of related flows.

Keywords

Lagrangian Method Artificial Viscosity Rayleigh Line High Temperature Flow Shock Tube Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Coste, B. Meltz, J. Ovadia, Computing methods in applied sciences and Engineering, North Holland (1982), p. 369.Google Scholar
  2. [2]
    J.P. Chabard, C. Coste, to be published.Google Scholar
  3. [3]
    A.Froger, S. Gauthier, to be published.Google Scholar
  4. [4]
    Richtmyer, Morton, Difference methods for initial value problems, J. WileyGoogle Scholar
  5. [5]
    J.U. Brackbill, J.S. Saltzmann, J. Comp. Phys. 46,3 (1982), pp.342–368.CrossRefGoogle Scholar
  6. [6]
    J.K. Dukowicz, “An improved accuracy general remapping algorithm”, to appear.Google Scholar
  7. [7]
    B. Van Leer, J. Comp. Phys. 23 (1977), pp. 276–299.CrossRefGoogle Scholar
  8. [8]
    Zalesak, J. Comp. Phys. 31 (1979), pp. 335–362.CrossRefGoogle Scholar
  9. [9]
    D. Bailey, to appear.Google Scholar
  10. [10]
    J.P. Boris, D.L. Book, J. Comp. Phys. 11 (1973), pp. 38–69 cf also Vol 18 (1975), pp. 248–283 and Vol 20 (1976), pp. 397–431.CrossRefGoogle Scholar
  11. [11]
    P. Woodward, P. Collela, J. Comp. Phys. 54 (1984), pp. 174–201.CrossRefGoogle Scholar
  12. [12]
    G. Sod, J. Comp. Phys. 27 (1978), pp. 1–31.CrossRefGoogle Scholar
  13. [13]
    N. Legrand, J. Ovadia, Méthode Numériques dans les sciences de l'ingénieur, Dunod (1979), p. 347Google Scholar
  14. [14]
    W.F. Noh, P. Woodward, 5th International Conference on Numerical Methods in Fluids Dynamics (1976)Google Scholar
  15. [15]
    J.R. Buchler, JQSRT 30 (1983), pp. 395–408.Google Scholar
  16. [16]
    B. Mercier, to be published.Google Scholar
  17. [17]
    G. Meurant, M. Patron, J. Tassart, to be published.Google Scholar
  18. [18]
    R. Courant, K.O. Friedrichs, Supersonic flow and shock waves, Springer, 1951.Google Scholar
  19. [19]
    C.L. Mader, C.A. Forest, Los Alamos Scientific Laboratory report 6259 (1976)Google Scholar
  20. [20]
    G. Dammame, M. Missonnier, 7th Symposium on Detonation, Annapolis (1981), p. 641.Google Scholar
  21. [21]
    W. Ficket, W.C. Davis, Detonation, University of California press, (1979).Google Scholar
  22. [22]
    P. Donguy, N. Legrand, 7th Symposium on Detonation, Annapolis (1981), p. 695.Google Scholar
  23. [23]
    L. Brun et al. in Laser interaction and related plasma phenomena, Plenum Press, vol 4 (1977), p. 1059; L. Brun, B. Sitt, CEA Report R5012 (1979).Google Scholar
  24. [24]
    J.M. Dufour, D. Galmiche, B. Sitt, in Laser Interaction and related plasma phenomena, Plenum Press, Vol 6 (1984), p. 709.Google Scholar
  25. [25]
    D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral methods, SIAM (1977).Google Scholar
  26. [26]
    Andronov et al., J.E.T.P. 44 (1976), p. 424.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • R. Chéret
    • 1
  • R. Dautray
    • 2
  • J. C. Desgraz
    • 2
  • B. Mercier
    • 2
  • G. Meurant
    • 2
  • J. Ovadia
    • 2
  • B. Sitt
    • 2
  1. 1.Centre d'Etudes de VaujoursSevran
  2. 2.Centre d'Etudes de Limeil-ValentonVilleneuve-St-Georges

Personalised recommendations