Advertisement

Impurity pinning in quasi-1D superconductivity

  • Hidetoshi Fukuyama
VI. Related Topics
Part of the Lecture Notes in Physics book series (LNP, volume 217)

Abstract

Possible impurity pinning has been investigated in quasi-one-dimensional superconductors, and it is found that a 2π-soliton of Josephson phase can spontaneously be created around an impurity as far as the amplitude of the order parameter of the superconductivity is small enough. The result implies the existence of a novel resistive state just below the critical temperature, which is expected to be highly non-Ohmic.

Keywords

Superconducting State Charge Density Wave Quantum Fluctuation Anderson Localization Impurity Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A. Lee, T.M. Rice and P.W. Anderson, Solid State Commun. 14 (1974) 703.Google Scholar
  2. 2.
    For review, e.g. N.P. Ong, Can. J. Phys. 60 (1982) 59; G. Grüner, Comments on Solid State Physics 10 (1983) 183.Google Scholar
  3. 3.
    A. Luther and I. Peschel, Phys. Rev. Lett. 32 (1974) 992.Google Scholar
  4. 4.
    S.T. Chui and J.W. Bray, Phys. Rev. B16 (1977) 1329, ibid B19 (1979) 4020.Google Scholar
  5. 5.
    W. Apel, J. Phys. C. 15 (1982) 1973.Google Scholar
  6. 6.
    W. Apel and T.M. Rice, Phys. Rev. B26 (1982) 7063, J. Phys. C. 16 (1983) L271; ibid L1151.Google Scholar
  7. 7.
    H. Fukuyama, J. Phys. Soc. Jpn. 41 (1976) 513.Google Scholar
  8. 8.
    S. Tomonaga, Prog. Theor. Phys. 5 (1950) 349.Google Scholar
  9. 9.
    A. Luther and I. Peschel, Phys. Rev. B9 (1974) 2911.Google Scholar
  10. 10.
    A. Luther and V.J. Emery, Phys. Rev. Lett. 33 (1974) 589.Google Scholar
  11. 11.
    D.C. Mattis, J. Math, Phys. 15 (1974) 609.Google Scholar
  12. 12.
    For review, J. Solyom, Adv. in Phys. 28 (1979) 201.Google Scholar
  13. 13.
    K.B. Efetov and A.I. Larkin, Soviet Phys.-JETP 42 (1976) 390.Google Scholar
  14. 14.
    A. Luther, Phys. Rev. B15 (1977) 403.Google Scholar
  15. 15.
    Y. Suzumura, Prog. Theor. Phys. 61 (1979) 1.Google Scholar
  16. 16.
    For review on the phase Hamiltonian, H. Fukuyama and H. Takayama, Dynamical Properties of Quasi-One-Dimensional Conductors — Phase Hamiltonian Approach in Electronic Properties of Inorganic Quasi-One-Dimensional Compounds, ed. by P. Monceau (D. Reidel Pub. Company).Google Scholar
  17. 17.
    Y. Suzumura and H. Fukuyama, J. Phys. Soc. Jpn. 52 (1983) 2870.Google Scholar
  18. 18.
    T. Saso, Y. Suzumura and H. Fukuyama, LT17 (Karlsruhe, 1984); Y. Suzumura, T. Saso, H. Fukuyama and J. Cardy, ibid.Google Scholar
  19. 19.
    D.J. Scalapino, Y. Imry and P. Pincus, Phys. Rev. B11 (1975) 2042.Google Scholar
  20. 20.
    H. Fukuyama and P.A. Lee, Phys. Rev. B17 (1978) 535.Google Scholar
  21. 21.
    H. Fukuyama, J. Phys. Soc. Jpn. 45 (1978) 1266.Google Scholar
  22. 22.
    S. Coleman, Phys. Rev. D11 (1975) 2088.Google Scholar
  23. 23.
    R. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D11 (1975) 3424.Google Scholar
  24. 24.
    H. Fukuyama, Y. Suzumura and T. Saso, J. Phys. Soc. Jpn. 53 (1984) 1206.Google Scholar
  25. 25.
    Y. Tajima and K. Yamaya, J. Phys. Soc. Jpn. 53 (1984) 495.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Hidetoshi Fukuyama
    • 1
  1. 1.Institute for Solid State PhysicsTokyo UniversityTokyoJapan

Personalised recommendations