Advertisement

(TMTSF)2X compounds: Superconductivity, spin-density waves and anion ordering

  • H. J. Schulz
VI. Related Topics
Part of the Lecture Notes in Physics book series (LNP, volume 217)

Abstract

The different types of experimentally observed phase transitions in (TMTSF)2X and (TMTTF)2X salts (superconductivity, antiferromagnetism, spin-Peierls and anion ordering) are reviewed. Current theoretical models of these transitions and the related low-temperature properties are discussed. Both theoretical arguments and experimental results, mainly from transport and magnetic resonance measurements, suggest important effects of low dimensionality in these compounds.

Keywords

Phase Diagram Magnetic Resonance Measurement Interchain Coupling Umklapp Scattering Noninteracting Fermion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.E. Peierls, Ann. Phys. (Leipzig) 4, 121 (1930), “Quantum Theory of Solids” (Oxford University Press, London, 1955), p.108.Google Scholar
  2. 2.
    D. Jérome et al., J. Phys. (Paris) Lett. 41, L95 (1980).Google Scholar
  3. 3.
    J.C. Slater, Phys. Rev. 82, 538 (1951); J. des Cloiseaux, J. Phys. Radium (Paris) 20, 607 (1959); A.W. Overhauser, Phys. Rev. Lett. 4, 462 (1960).Google Scholar
  4. 4.
    E. Pytte, Phys. Rev. B 10, 4637 (1974); M.C. Cross and D.S. Fisher, Phys. Rev. B 19, 402 (1979).Google Scholar
  5. 5.
    “Conducteurs et Supraconducteurs Synthétiques à basse Dimension”, Les Arcs, France, 1982, J. Phys. (Paris) Colloque 44 (1983).Google Scholar
  6. 6.
    Proceedings of the “International Conference on Low-Dimensional Synthetic Metals”, Abano Terma, Italy, 1984, Mol. Cryst. Liq. Cryst., to appear.Google Scholar
  7. 7.
    J. Friedel and D. Jérome, Contemp. Phys. 23, 583 (1982).Google Scholar
  8. 8.
    D. Jérome and H.J. Schulz, Adv. Phys. 32, 299 (1982).Google Scholar
  9. 9.
    S.S.P. Parkin et al., Phys. Rev. Lett. 50, 270 (1883).Google Scholar
  10. 10.
    E.B. Yagubskii et al., Pisma JETP 39, 275 (1984) (JETP Lett. 39, to appear).Google Scholar
  11. 11.
    C.S. Jacobsen et al., Solid State Commun. 38, 423 (1981), Phys. Rev. Lett. 46, 1142 (1981), and in ref. 5; J.F. Kwak, Phys. Rev. B 26, 4789 (1982).Google Scholar
  12. 12.
    P.M. Grant, Phys. Rev. B 26, 6888 (1982), and in ref. 5.Google Scholar
  13. 13.
    K. Bechgaard et al., Phys. Rev. Lett. 46, 852 (1981).Google Scholar
  14. 14.
    K. Andres et al., Phys. Rev. Lett. 45, 1449 (1980).Google Scholar
  15. 15.
    P. Garoche et al., J. Phys. (Paris) Lett. 43, L147 (1982).Google Scholar
  16. 16.
    J.C. Scott et al., Phys. Rev. Lett. 45, 2125 (1980); A. Andrieux et al., J. Phys. (Paris) Lett. 42, L87 (1981); K. Mortensen et al., Phys. Rev. Lett. 46, 1234 (1981), Phys. Rev. B 25, 3319 (1982).Google Scholar
  17. 17.
    J.B. Torrance et al., Phys. Rev. Lett. 49, 882 (1982); W.M. Walsh et al., Phys. Rev. Lett. 49, 885 (1982).Google Scholar
  18. 18.
    L.J. Azevedo et al., Physica B 108, 1183 (1981); J.F. Kwak et al., Phys. Rev. Lett. 46, 1296 (1981).Google Scholar
  19. 19.
    T. Takahashi et al., J. Phys. (Paris) Lett. 43, L565 (1982), and in ref. 5.Google Scholar
  20. 20.
    M. Ribault et al., J. Phys. (Paris) Lett. 44, L953 (1983), ibid. 45, to appear, and in ref. 6.Google Scholar
  21. 21.
    L.P. Gorkov and A.G. Lebed, J. Phys. (Paris) Lett. 45, L433 (1984).Google Scholar
  22. 22.
    M. Heritier et al., J. Phys. (Paris) Lett. 45, to appear. See also; J. Friedel, to be published; K. Yamaji, in ref. 6.Google Scholar
  23. 23.
    J.P. Pouget et al., J. Phys..(Paris) Lett. 42, L543 (1982), and in ref. 5.Google Scholar
  24. 24.
    S. Tomic et al., in ref. 5; T. Takahashi et al., ref. 19.Google Scholar
  25. 25.
    S.S.P. parkin et al., Mol. Cryst. Liq. Cryst. 79, 213 (1982).Google Scholar
  26. 26.
    R. Bruinsma and V.J. Emery, in ref. 5; P.M. Grant, Phys. Rev. Lett., (1983).Google Scholar
  27. 27.
    Yu. A. Bychkov et al., Sov. Phys. JETP 23, 489 (1966).Google Scholar
  28. 28.
    J. Solyom, Adv. Phys. 28, 201 (1979); V.J. Emery, in ldHighly Conducting One-Dimensional Solids”, ed. by J.T. Devreese et al. (Plenum, New York, 1979),p. 247.Google Scholar
  29. 29.
    D.J. Scalapino et al., Phys. Rev. B 11, 2042 (1975); R.A: Klemm and H. Gutfreund, Phys. Rev. B 14, 1086 (1976).Google Scholar
  30. 30.
    H.J. Schulz, to be published.Google Scholar
  31. 31.
    H.J. Schulz and C. Bourbonnais, Phys. Rev. B 27, 5856 (1983); H.J. Schulz, in ref.5.Google Scholar
  32. 32.
    S. Barisic and S. Brazovskii, in “Recent Developments in Condensed Matter Physics”, vol. 1, ed. by J.T. Devreese (Plenum, New York, 1981), P. 327; V.J. Emery et al., Phys. Rev. Lett. 48, 1039 (1982).Google Scholar
  33. 33.
    J.F. Hirsch and D.J. Scalapino, Phys. Rev. Lett. 50, 1168 (1983).Google Scholar
  34. 34.
    C. Coulon et al., J. Phys. (Paris) 43, 1721 (1982); S. Tomic et al., in ref. 5.Google Scholar
  35. 35.
    H.J. Schulz, J. Phys. C 16, 6769 (1983).Google Scholar
  36. 36.
    J. Voit and H.J. Schulz, in ref. 6.Google Scholar
  37. 37.
    L.G. Caron and C. Bourbonnais, Phys. Rev. B 29, 4230 (1984).Google Scholar
  38. 38.
    B. Horovitz et al., Solid State Commun. 39, 541 (1981).Google Scholar
  39. 39.
    K. Machida, J. Phys. Soc. Jpn. 50, 2195 (1981); K. Machida and T. Matsubara, ibid. 50, 3231 (1981).Google Scholar
  40. 40.
    K. Yamaji, J. Phys. Soc. Jpn. 52, 1361 (1983), and in ref. 6.Google Scholar
  41. 41.
    H.J. Schulz et al., Phys. Rev. B 28, 6560 (1983).Google Scholar
  42. 42.
    C. Bourbonnais et al., J. Phys. (Paris) Lett. 45, L755 (1984). The crossover exponent determined in this paper differs from eq.(6), probably because different physical quantities are considered.Google Scholar
  43. 43.
    P.M. Chaikin et al., in ref. 5.Google Scholar
  44. 44.
    H.K. Ng et al., J. Phys. (Paris) Lett. 43, L513 (1982), and in ref. 5; T. Timusk and H.K. Ng, in ref. 6.Google Scholar
  45. 45.
    H.J. Schulz et al., J. Phys. (Paris) 42, 991 (1981). The Ginzburg-Landau transport theory used in this paper is certainly at best of some qualitative validity, see also ref. 41.Google Scholar
  46. 46.
    K.B. Efetov, J. Phys. (Paris) Lett. 44, L369 (1983).Google Scholar
  47. 47.
    D. Jérome, in ref. 6.Google Scholar
  48. 48.
    C. Coulon et al., J. Phys. (Paris) 43, 1059 (1982).Google Scholar
  49. 49.
    S.S.P. Parkin et al., Phys. Rev. B 26, 6319 (1982); C. Coulon et al., ibid. 26, 6322 (1982).Google Scholar
  50. 50.
    F. Creuzet et al., in ref. 6.Google Scholar
  51. 51.
    S.S.P. Parkin et al., Mol. Cryst. Liq. Cryst. 79, 605 (1982), and footnote in ref. 5, p. C3-791.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • H. J. Schulz
    • 1
  1. 1.Laboratoire de Physique des SolidesUniversité Paris-SudOrsayFrance

Personalised recommendations