Advertisement

Remanent deformation of CDWs

  • L. Mihály
  • G. Mihály
  • A. Janossy
V. Hysteresis and Metastability
Part of the Lecture Notes in Physics book series (LNP, volume 217)

Abstract

We review experimental evidences demonstrating that CDW materials show metastable states in the electronic properties. The latest observations indicate that application of currents above the threshold of nonlinear conduction brings the CDW's into an asymmetric state. The results are interpreted in terms of a phenomenological model where the deformation of CDW wave number accounts for the metastability.

Keywords

Current Pulse Charge Density Wave Gold Wire Asymmetric State Conditioning Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Gill, Mol. Cryst. Liq. Cryst. 81, 73 (1982), see also, J.C. Gill and A.W. Higgs, Solid State Comm. 48, 709 (1983).Google Scholar
  2. 2.
    J.C. Gill, Solid State Commun. 39, 1203 (1981).Google Scholar
  3. 3.
    Gy. Hutiray, G. Mihaly and L. Mihaly, Solid State Commun. 48, 227 (1983).Google Scholar
  4. 4.
    G. Mihaly and L. Mihaly, Phys. Rev. Lett. 52, 149 (1984).Google Scholar
  5. 5.
    L. Mihaly and G. Gruner, abstract submitted to this conference, J. Dumas and C. Schlenker, abstract of invited talk.Google Scholar
  6. 6.
    J. Dumas and C. Schlenker, Phys. Rev. B (1984 Aug.).Google Scholar
  7. 7.
    R.S. Lear, M.J. Skove, E.P. Stillwell and J.W. Brill, Phys. Rev. B 29, 5656 (1984).Google Scholar
  8. 8.
    R.M. Fleming and L.F. Schneemeyer, Phys. Rev. B28, 6996 (1983) and references therein.Google Scholar
  9. 9.
    A. Janossy, G. Mihaly and L. Mihaly, paper presented at this conference and refernces therein.Google Scholar
  10. 10.
    B. Joos and D. Murray, Phys. Rev. B 29, 547 (1984).Google Scholar
  11. 10a.
    W. Kinzel, Phys. Rev. Lett. 51, 1787 (1983).Google Scholar
  12. 11.
    L. Mihaly and G. Gruner, Solid State Comm. 50, 807 (1984).Google Scholar
  13. 12.
    R. Bruinsma, private communication.Google Scholar
  14. 12a.
    F. Beleznay, private communication.Google Scholar
  15. 13.
    H. Fukayama and P.A. Lee, Phys. Rev. B17, 535 (1977).Google Scholar
  16. 14.
    L. Sneddon, M.C. Cross and D.S. Fisher, Phys. Rev. Lett. 49, 292 (1982).Google Scholar
  17. 14a.
    L. Sneddon, Phys. Rev. B 29, 719 (1984).Google Scholar
  18. 14b.
    D.S. Fisher, Phys. Rev. Lett. 50, 1486 (1983).Google Scholar
  19. 15.
    D.S. Fisher, preprint.Google Scholar
  20. 15a.
    P. Littlewood, abstract of invited talk.Google Scholar
  21. 15b.
    J.R. Schrieffer, private communication.Google Scholar
  22. 16.
    A. Janossy, G. Mihaly and G. Kriza, Solid State Comm. 51, 63 (1984).Google Scholar
  23. 16a.
    L. Mihaly and A. Janossy, Phys. Rev. B, in press.Google Scholar
  24. 17.
    N.P. Ong and G. Verma, Phys. Rev. B27, 4495 (1983).Google Scholar
  25. 18.
    G. Mihaly, Gy. Hutiray and L. Mihaly, Phys. Rev. B28, 4896 (1983).Google Scholar
  26. 19.
    N.P. Ong, G. Verma and K. Maki, Phys. Rev. Lett. 52, 663 (1984).Google Scholar
  27. 20.
    A.W. Higgs and J.C. Gill, Solid State Comm. 47, 737 (1983); N.P. Ong, private communication.Google Scholar
  28. 21.
    H. Mutka, S. Bouffard, J. Dumas and C. Schlenker to be published in Journal de Physique.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • L. Mihály
    • 1
  • G. Mihály
    • 1
  • A. Janossy
    • 1
  1. 1.Central Research Institute for PhysicsBudapestHungary

Personalised recommendations