Bistable configurations of the pinned charge density wave: Random-field-model dynamics observed in rearrangement prior to depinning

  • N. P. Ong
  • D. D. Duggan
  • C. B. Kalem
  • T. W. Jing
  • P. A. Lee
V. Hysteresis and Metastability
Part of the Lecture Notes in Physics book series (LNP, volume 217)


The pinned charge density wave (CDW) has two stable states A and B. Conversion between them occurs when the applied field changes sign. During conversion the resistance changes logarithmically with time. The total time for conversion varies with temperature (T) and field (E) as exp (const./ET), in striking agreement with theories worked out for Random-Field-Ising-Models. This enormous time variation (106 to 10−6 s) dominates all transient and ac responses of the pinned CDW. Experimental results supporting this picture are derived from measurements of the do resistance, pulsed transience experiments and rf ac impedance measurements.


Charge Density Wave Pristine State Striking Agreement Random Field Ising Model Electrical Hysteresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.A. Lee and [T.M. Rice, Phys. Rev. B 19, 3970 (1979)Google Scholar
  2. 2.
    Yoseph Imry and Shang-keng Ma, Phys. Rev. Lett. 35, 1399 (1975)Google Scholar
  3. 3.
    J.W. Brill, N.P. Ong, J.C. Eckert, J.W. Savage, S.K. Khanna and R.B. Somoana, Phys. Rev. B 23, 1517 (1981)Google Scholar
  4. 4.
    J.C. Gill, Solid State Commun. 39, 1203 (1981); J.C. Gill, Solid State Commun. 44, 1041 (1982); J.C. Gill, Mol. Cryst. Liq. Cryst. 81, 791 (1982)Google Scholar
  5. 5.
    R.M. Fleming and L.F. Schneemeyer, Phys. Rev. B 28, 6996 (1983)Google Scholar
  6. 6.
    G. Mihály and L. Mihály, Phys. Rev. Lett. 52, 149 (1984)Google Scholar
  7. 7.
    G. Mihály, Gy. Hutiray and L. Mihály, Solid State Commun. 48, 203 (1983); Gy. Hutiray, G. Mihály and L. Mihály, Solid State Commun. 47, 121 (1983)Google Scholar
  8. 8.
    G. Mihály, G. Kriza and A. Jánossy, Phys. Rev. B 30, (1984) in press.Google Scholar
  9. 9.
    R.J. Birgeneau, H. Yoshizawa, R.A. Cowley, G. Shirane and H. Ikeda, Phys. Rev. B 28, 1438 (1983)Google Scholar
  10. 10.
    G. Grinstein and J.F. Fernandez, preprint.Google Scholar
  11. 11.
    R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 52, 1547 (1984); J. Villain, prepring.Google Scholar
  12. 12.
    D. Duggan, N.P. Ong and P.A. Lee, unpublished.Google Scholar
  13. 13.
    J.C. Gill, Proceedings of the International Symposium on Nonlinear transport phenomena and related phenomena in inorganic quasi-onedimensional conductors. Hokkaido University, Sapporo, 1983.Google Scholar
  14. 14.
    G. Grüner, L.C. Tippie, J. Sanny, W.G. Clark and N.P. Ong, Phys. Rev. Lett. 45, 935 (1980)Google Scholar
  15. 15.
    R.J. Cava, R.M. Fleming, P.B. Littlewood, E.A. Reitman and L.F. Schneemeyer, Phys. Rev. B, to appear.Google Scholar
  16. 16.
    K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 341 (1941); D.W. Davidson and R.H. Cole, J. Chem. Phys. 19, 1484 (1951)Google Scholar
  17. 17.
    Wu, Wei-yu, L. Mihaly, George Mozurkewich and G. Grüner, Phys. Rev. Lett. 52, 2382 (1984)Google Scholar
  18. 18.
    C.B. Kalem and N.P. Ong, unpublished.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • N. P. Ong
    • 1
  • D. D. Duggan
    • 1
  • C. B. Kalem
    • 1
  • T. W. Jing
    • 1
  • P. A. Lee
    • 2
  1. 1.Department of PhysicsUniversity of Southern CaliforniaLos Angeles
  2. 2.Department of PhysicsMassachusetts Institute of TechnologyCambridge

Personalised recommendations