Advertisement

Pinning, metastability and sliding of charge-density-waves

  • P. B. Littlewood
V. Hysteresis and Metastability
Part of the Lecture Notes in Physics book series (LNP, volume 217)

Abstract

Incommensurate charge density waves pinned by random impurities will exhibit metastable behavior in the pinned phase for applied d.c. bias voltages below threshold. Numerical simulations of a one-dimensional system and analytic calculations within a mode-coupling approximation are presented.

Keywords

Metastable State Bias Field Threshold Field Dielectric Response Function Random Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For reviews see G. Grüner, Physica 8D, 1 (1983) and N. P. Ong Can. J. Phys. 60, 757 (1982).Google Scholar
  2. 2.
    S. E. Brown, G. Mozurkewich and G. Grüner, Phys. Rev. Lett. 52, 2277 (1984); M. Sherwin and A. Zettl, to be published.Google Scholar
  3. 3.
    J. C. Gill, Solid State Commun. 39, 1203 (1981); R. M. Fleming and L. F. Schneemeyer, Phys. Rev. B28, 6996 (1983).Google Scholar
  4. 4.
    D. W. Ruesink, J. M. Perz and I. M. Templeton, Phys. Rev. Lett. 45, 734 (1980); E. Fawcett, R. Griessen, and C. Vettier, in Transition Metals 1977 ed. M. J. G. Lee, J. M. Perz and E. Fawcett, IOP Conf. Proc. 39, Qnst. of Physics, London, 1978) p. 592.Google Scholar
  5. 5.
    G. Mihaly and L. Mihály, Phys. Rev. Lett. 52, 109 (1984)Google Scholar
  6. 6.
    G. Grüner, in Proc. of Int. Symposium on Non-Linear Transport and Related Phenomena in Inorganic Quasi One-Dimensional Conductors, Sapporo, Japan (1983), p. 77; R. J. Cava, R. M. Fleming, P. B. Littlewood, E. A. Rietman, L. F. Schneemeyer and R. G. Dunn, to be published; W. Wu, G. Mozurkewich and G. Grüner to be published.Google Scholar
  7. 7.
    R. M. Fleming and C. C. Grimes, Phys. Rev. Lett. 42, 1423 (1979)Google Scholar
  8. 8.
    D. S. Fisher, to be published, and Phys. Rev. Lett. 50, 1486 (1983).Google Scholar
  9. 9.
    N. P. Ong, G. Verma and K. Maki, Phys. Rev. Lett. 52, 663 (1984).Google Scholar
  10. 10.
    L. Sneddon, M. C. Cross, and D. S. Fisher, Phys. Rev. Lett. 49, 292 (1982); L. Sneddon, Phys. Rev. B29, 719 and 725 (1984).Google Scholar
  11. 11.
    H. Fukuyama and P. A. Lee, Phys. Rev. B17, 535 (1978).Google Scholar
  12. 12.
    P. A. Lee and T. M. Rice, Phys. Rev. B19, 3970 (1979).Google Scholar
  13. 13.
    P. B. Littlewood and T. M. Rice, Phys. Rev. Lett. 48, 44 (1984).Google Scholar
  14. 14.
    H. Matsukawa and H. Takayama, Solid State Commun. 50, 283 (1984); N. Teranishi and R. Kubo, J. Phys. Soc. Japan 47, 720 (1979); J. B. Sokoloff, Phys. Rev. B23, 1992 (1981).Google Scholar
  15. 15.
    T. M. Rice, S. Whitehouse and P. B. Littlewood, Phys. Rev. B24, 2751 (1981).Google Scholar
  16. 16.
    This picture bears a strong resemblance to models of dynamics of spin-glasses, originally due to S.-K. Ma and J. Rudnick, Phys. Rev. Lett. 40, 589 (1978) and considerably expanded by H. Sompolinsky and A. Zippelius, Phys. Rev. B25, 6860 (1982).Google Scholar
  17. 17.
    The mean-field solution of this model by D. S. Fisher (ref. 8) reads to a |ω| cusp below threshold (as long as the system exhibits hysteresis) and D. S. Fisher has given general arguments as to why the same power law should be seen in low dimensions. Experimentally, cusps in ε(ω) are observed (ref. 6) but the exact ω-dependence is not yet clear.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • P. B. Littlewood
    • 1
  1. 1.AT&T Bell LaboratoriesMurray Hill

Personalised recommendations