Advertisement

Mode locking and chaos in sliding charge-density-wave systems

IV. Charge Density Wave Transport
Part of the Lecture Notes in Physics book series (LNP, volume 217)

Abstract

Sliding CDWs in ac electric fields may serve as model systems for the study of mode-locking phenomena and the transition to chaos in dissipative dynamical systems with competing frequencies. The mode-locking structure at the transition is expected to form a complete devil's staircase with fractal dimension D ≈ 0.87. Indeed, Brown, Mozurkewich and Gruner have observed a multitude of steps in the I–V characteristics of NbSe3 with an apparent fractal dimension D = 0.91 ± 0.03.

Keywords

Fractal Dimension Critical Line Frequency Dependent Conductivity Arnold Tongue Universal Scaling Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.M. Fleming and C.C. Grimes, Phys. Rev. Lett. 42, 1423 (1979); P. Monceau, J. Richard and M. Renard, Phys. Rev. Lett. 45, 43 (1980).Google Scholar
  2. 2.
    A. Zettl and G. Grüner, Solid State Commun. 46, 501 (1983); Phys. Rev. B29, 755 (1984).Google Scholar
  3. 3.
    P. Bak, T. Bohr, M.H. Jensen, and P.V. Christiansen, Solid State Commun. 51, 231 (1984); T. Bohr, P. Bak and M.H. Jensen, Phys. Rev. A (to be published).Google Scholar
  4. 4.
    M.H. Jensen, P. Bak and T. Bohr, Phys. Rev. Lett. 50, 1637 (1983); Phys. Rev. A (to be published).Google Scholar
  5. 5.
    For reviews see P. Bak in “Statics and dynamics of nonlinear systems” Edited by G. Benedek, H. Bilz, and R. Zeyher (Springer, Berlin, 1983) p. 160; P. Bak, M.H. Jensen, and T. Bohr in “Procedings of the 59th Nobel Symposium”, Physica Scripta, to be published.Google Scholar
  6. 6.
    P. Alstrom, M.H. Jensen, and M.T. Levinsen, Phys. Lett. 103A, 171 (1984).Google Scholar
  7. 7.
    S.E. Brown, G. Mozurkewich and G. Grüner, Phys. Rev. Lett. 52, 2277 (1984).Google Scholar
  8. 8.
    G. Grüner, A. Zawadowski and P.M. Chaikin, Phys. Rev. Lett. 46, 511 (1981).Google Scholar
  9. 9.
    W.L. Stewart, Appl. Phys. Lett. 12, 277 (1968). D.E. McCumber, J. Appl. Phys. 39, 3113 (1968).Google Scholar
  10. 10.
    J.R. Waldram and P.H. Wu, J. Low Temp. Phys. 47, 363 (1982); M.J. Renne and D. Poulder, Rev. Phys. Appliqué 9, 25 (1974).Google Scholar
  11. 11.
    M. Ya. Azbel and P. Bak, Phys. Rev. B, to be published.Google Scholar
  12. 12.
    P. Bak, Proceedings of the International Symposium on Nonlinear Transport in Quasi-one-dimensional Conductors, Sapporo, Japan (Hokkaido University, Sapporo, 1984) p 13; R.P. Hall and A. Zettl, Phys. Rev. B30, 2279 (1984).Google Scholar
  13. 14.
    N.P. Ong, G. Verma and K. Maki, Phys. Rev. Lett. 52, 2419 (1984).Google Scholar
  14. 15.
    S.N. Coppersmith and P.B. Littlewood, preprint.Google Scholar
  15. 16.
    M.J. Feigenbaum, L.P. Kadanoff and S.J. Shenker, Physics 5D 370 (1982); S. Ostlund, D. Rand, J. Sethna, and E. Siggia, Physics 5D, 303 (1983).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • P. Bak
    • 1
  1. 1.Department of PhysicsBrookhaven National LaboratoryUptonUSA

Personalised recommendations