Advertisement

Threshold field, electrical conductivity and time-dependent voltage in transition metal tri- and tetrachalcogenides

  • P. Monceau
  • M. Renard
  • J. Richard
  • M. C. Saint-Lager
  • Z. Z. Wang
IV. Charge Density Wave Transport
Part of the Lecture Notes in Physics book series (LNP, volume 217)

Abstract

Non-linear transport properties have now been measured in numerous one-dimensional transition metal tri- and tetrachalcogenides. For all these compounds the threshold electric field above which the non-linear state appears goes through a minimum in the vicinity of the Peierls temperature transition. The value of this minimum is all the higher as the Peierls transition occurs at a higher temperature. The variation of the fundamental frequency of the time-dependent voltage is shown to follow a (E-Ec)y law (with y ∼ 1.5) near the threshold indicating a collective pinning. Finally non-linear properties of a NbSe3 sample have been studied when both contacts are above the Peierls temperature : in these conditions an a.c. voltage is still detected. This result is discussed in relation with theories on the origin of this voltage generation.

Keywords

Current Oscillation Threshold Electric Field Polymeric Rubber Peierls Transition Critical Temperature Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.M. Fleming, D.E. Moncton and D.B. McWhan, Phys. Rev. B 18 (1978) 5560.Google Scholar
  2. 2.
    C. Roucau, J. Phys. 44 (1983) C3–1725.Google Scholar
  3. 3.
    Z.Z. Wang, H. Salva, P. Monceau, M. Renard, C. Roucau, R. Ayrolles, F. Levy, L. Guemas and A. Meerschaut, J. Physique-Letters 44 (1983) L–311.Google Scholar
  4. 4.
    C. Roucau, R. Ayrolles, P. Gressier and A. Meerschaut, J. Phys. C 17 (1984) 2993.Google Scholar
  5. 5.
    C.M. Varma and A.L. Simons, Phys. Rev. Lett. 51 (1983) 138.Google Scholar
  6. 6.
    A. Fournel, B. Oujia, and J.B. Sorbier, Proceedings on the International Conference on the Physics and Chemistry of Low-Dimensional Synthetic Metals, Abano Terme Italy, June 1984, Mol. Crystals, in press.Google Scholar
  7. 7.
    For a review see N.P. Ong, Can J. Phys. 60 (1981) 757. G. Gruner, Physica 8D (1983) 1, G. Gruner and A. Zettl, to be published, P. Monceau in Electronic Properties of Inorganic Quasi One-Dimensional Metals, Part II, edited by P. Monceau, D. Reidel Publishing Company Holland (1985).Google Scholar
  8. 8.
    K. Maki, Phys. Rev. Lett. 39 (1977) 46.Google Scholar
  9. 9.
    K. Maki, Phys. Lett. 70 A (1979) 449.Google Scholar
  10. 10.
    P. Monceau, J. Richard and M. Renard, Phys. Rev. Lett. 45 (1980) 43.Google Scholar
  11. 11.
    G. Grüner, A. Zawadowski and P.M. Chaikin, Phys. Rev. Lett. 46 (1981) 511.Google Scholar
  12. 12.
    L. Sneddon, M.C. Cross and D.S. Fisher, Phys. Rev. Lett. 49 (1982) 292.Google Scholar
  13. 13.
    D.S. Fisher, Phys. Rev. Lett. 50 (1983) 1486.Google Scholar
  14. 14.
    J.B. Sokoloff, Phys. Rev. B 23 (1981) 1992.Google Scholar
  15. 15.
    L. Pietronero and S. Strässler, Phys. Rev. B 28 (1983) 5863.Google Scholar
  16. 16.
    L. Sneddon, Phys. Rev. B 29 (1984) 719.Google Scholar
  17. 17.
    G. Mozurkewich and G. Grüner, Phys. Rev. Lett. 51, (1983) 2206.Google Scholar
  18. 18.
    N.P. Ong, G. Verma and K. Maki, Phys. Rev. Lett. 52 (1984) 663.Google Scholar
  19. 19.
    L.P. Gork'ov, Pis'ma Zh Eksp. Teor. Fiz. 38 (1983) 76, J.E.T.P. Letters 38 (1983) 87.Google Scholar
  20. 20.
    A. Zettl, M. Kaiser and G. Gruner, preprint.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • P. Monceau
    • 1
  • M. Renard
    • 1
  • J. Richard
    • 1
  • M. C. Saint-Lager
    • 1
  • Z. Z. Wang
    • 1
  1. 1.Centre de Recherches sur les Très Basses TemperaturesCNRSGrenoble-CédexFrance

Personalised recommendations