Advertisement

Phase vortices and CDW conduction noise

  • Kazumi Maki
III. Dynamics of Charge Density Waves, Theory
Part of the Lecture Notes in Physics book series (LNP, volume 217)

Abstract

We review a theoretical aspect of the phase vortex model proposed by Ong, Verma and Maki to account for the quasi-periodic voltage oscillation observed in the non-Ohmic regime of the CDW states in NbSe3 and TaS3. Phase conservation requires a train of phase vortices at the domain boundary whenever two adjacent CDW domains move with different sliding velocities. These phase vortices move along the boundary with the number of vortices which sweep the boundary per second being proportional to the difference in the sliding velocities. In addition to conserving phase these vortices convert the CDW current into normal current (i.e. the quasi-particle current). This implies that the sources of the normal current are localized and move with the phase vortices. Therefore a periodic fundamental frequency proportional to the sliding velocity, when the CDW is pinned on one side of the array and moving on the other side.

Keywords

Noise Source Vortex Lattice Threshold Field Condensate Density Voltage Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.M. Fleming and C.C. Grimes, Phys. Rev. Lett. 42 1423 (1979)Google Scholar
  2. 1.a
    R.M. Fleming, Phys. Rev. B22, 5606 (1980).Google Scholar
  3. 2.
    P. Monceau, J. Richard, and M. Renard, Phys. Rev. Lett. 45, 43 (1980), and Phys. Rev. B25, 931 (1982).Google Scholar
  4. 3.
    N.P. Ong, G. Verma, and K. Maki, Phys. Rev. Lett. 52, 663 (1984).Google Scholar
  5. 4.
    G. Grüner, A. Zawadowski and P.M. Chaikin, Phys. Rev. Lett. 46, 511 (1981).Google Scholar
  6. 5.
    See for example, L. Sneddon, M.C. Cross, and D.S. Fisher, Phys. Rev. Lett. 49, 292 (1982); D.S. Fisher, Phys. Rev. Lett. 50, 1486 (1983); L. Sneddon, Phys. Rev. Lett. 52, 65 (1984); J.B. Sokoloff and B. Horovitz, J. Phys. (Paris) Colloq. 44 C3-1667 (1983).Google Scholar
  7. 6.
    N.P. Ong and G. Verma, Phys. Rev. B27, 4495 (1983).Google Scholar
  8. 7.
    G. Verma and N.P. Ong, Phys. Rev. B 30, (1984).Google Scholar
  9. 8.
    This type of experiment was recently performed by P. Monceau, M. Renard, M.C. Saint-Lager and Z.Z. Wang (private communication).Google Scholar
  10. 9.
    A brief description is given in K. Maki, N.P. Ong and G. Verma, Proc. Int. Conf. on the Physics and Chemistry of Low Dimensional Synthetic Metals, Abano Terme 1984, to be published in Mol. Cryst. Liq. Cryst.Google Scholar
  11. 10.
    P.A. Lee and T.M. Rice, Phys. Reve. B19, 3970 (1979).Google Scholar
  12. 11.
    N.P. Ong, C.B. Kalem and J.C. Eckert, Phys. Rev. B 30 (1984).Google Scholar
  13. 12.
    S. Aubry, Physica 7D, 240 (1983);S.Aubry and P.Y. Le Daeron, Physica 8D, 381 (1983).Google Scholar
  14. 13.
    L.P. Gor'kov, Pis'ma Zh. Eksp. Teor. Fig. 38, 76 (1983).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Kazumi Maki
    • 1
  1. 1.Department of PhysicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations