Advertisement

Near commensurability effects on charge density wave dynamics

  • Baruch Horovitz
III. Dynamics of Charge Density Waves, Theory
Part of the Lecture Notes in Physics book series (LNP, volume 217)

Abstract

Nearly commensurate charge density waves are described by a dilute phase-kink lattice. Linear response analysis shows that the shape of the AC response depends on the kink density and corresponds to a distribution of crossover frequencies. For nonlinear response a DC field EA is defined where the sliding kink lattice reaches the phason velocity. For E > EA and for some range of fields and damping constants the sliding system is unstable and the phenomena of narrow band noise is observed. The results also correspond to unusual flux lattice dynamics in superconducting films.

Keywords

Charge Density Wave Crossover Frequency Narrow Band Noise Commensurate Phase Charge Density Wave Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    R.M. Fleming, C.H. Chen and D.E. Moncton, J. de Physique Colloque 44, C3–1651 (1983)Google Scholar
  2. 2).
    Z.Z. Wang, H. Salva, P. Monceau, M. Renard, C. Rouceau, R. Ayroles, F. Levy, L. Guemas and A. Meerschaut, J. Physique Lett. 44, L–311 (1983)Google Scholar
  3. 3).
    C. Schlenker, J. Dumas and J.P. Pouget, in proc. of Int. Conf. Synthetic Metals, Mol. Cryst. Liq. Cryst. (to be published)Google Scholar
  4. 4).
    P.A. Lee, T.M. Rice and P.W. Anderson, Solid State Commun. 14, 703 (1974)Google Scholar
  5. 5).
    B. Horovitz and J.A. Krumhansl, Phys. Rev. B29, 2109 (1984)Google Scholar
  6. 6).
    Y. Ohfuti and Y. Ono, Solid State Commun. 48, 985 (1983)Google Scholar
  7. 7).
    T.M. Rice, Solid State Commun. 17, 1055 (1975)Google Scholar
  8. 8).
    B. Horovitz, in Solitons, Ed. by S.E. Trullinger and V. Zakharov (North Holland, to be published)Google Scholar
  9. 9).
    W.L. McMillan, Phys. Rev. B14, 1496 (1976)Google Scholar
  10. 10).
    S.N. Artemenko and A.F. Volkov, JETP Lett. 33, 147 (1981)Google Scholar
  11. 11).
    B. Horovitz and S.E. Trullinger, Solid State Commun. 49, 195 (1984)Google Scholar
  12. 12).
    W.Wu, L. Mihály, G. Mozurkewich and G. Grüner, in this volumeGoogle Scholar
  13. 13).
    G. Grüner, A. Zawadowski and P.M. Chaikin, Phys. Rev. Lett. 46, 511 (1981)Google Scholar
  14. 14).
    P.M. Marcus and Y. Imry, Solid State Commun. 33, 345 (1980)Google Scholar
  15. 15).
    M. Weger and B. Horovitz, Solid State Commun. 43, 583 (1982)Google Scholar
  16. 16).
    A.R. Bishop, B. Horovitz and P.S. Lomdahl (to be published)Google Scholar
  17. 17).
    N.P. Ong, G. Varma and K. Maki, Phys. Rev. Lett. 52, 663 (1984)Google Scholar
  18. 18).
    G. Mozurkewich and G. Grüner (to be published)Google Scholar
  19. 19).
    P. Martinoli, H. Beck, G.A. Racine, F. Patthey and Ch. Leemann, in this volumeGoogle Scholar
  20. 19)a.
    P. Martinoli, O. Daldini, C. Leeman and E. Stocker, Solid State Comm. 17, 205 (1975)Google Scholar
  21. 20).
    A. Schmid and W. Hauger, J. Low Temp. Phys. 11, 667 (1973)Google Scholar
  22. 21).
    A.T. Fiory, Phys. Rev. Lett. 27, 501 (1971)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Baruch Horovitz
    • 1
  1. 1.Department of PhysicsBen-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations