Structural and electrical properties interpretation through band structure calculations on the (MSe4)nI SERIES (M = Nb, Ta).

  • P. Gressier
  • A. Meerschaut
  • J. Rouxel
  • M. H. Whangbo
I. Structure
Part of the Lecture Notes in Physics book series (LNP, volume 217)


Halogened transition metal tetrachalcogenides (MX4)nY [M = Nb, Ta ; X = S, Se ; Y = I, Br, C1 , n = 2, 3, 10/3, 4] provide us with a new series of pseudo-1D compounds with exciting properties. In these compounds infinite (MX4) chains are well separated from each other by halogen chains. Metal ions are sandwiched by two rectangular chalcogen units with a dihedral angle of approximately 45°. According to n, different sequences of metal-metal distances can be observed in unit cells. There are also various possible arrangements of rectangular units and different halogen ions environments. Differences in structures are reflected in drastically different electronic properties such as semiconducting properties or occurrence of charge-density-waves (CDW) with related non-linear effects. A systematic study of the structure of (MSe4)n I compounds is presented along with tight binding band calculations. It is shown that Peierls distortion and CDW phenomena are strongly affected by dz2 band filling. As n decreases, dz2 band filling decreases from 1/2 leading to a decrease in the tendency to metal chain distortion. 3D interactions are also discussed in connection with CDW occurrence.


Charge Density Wave Iodine Atom Band Structure Calculation Tetragonal Symmetry Interchain Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1) a).
    P. Monceau, Statics and dynamics of non-linear systems, Solid State Science, 47, G. Benerek, H. Biltz and R. Zeyer Ed, Springer Verlag 1983, p. 144.Google Scholar
  2. (1) b).
    N.P. Ong, Can. J. Phys. 60, 757 (1982).Google Scholar
  3. (1) c).
    G. Gruner, Physica 8D, 1 (1983).Google Scholar
  4. (2).
    P. Gressier, A. Meerschaut, L. Guémas, J. Rouxel, P. Monceau, J. Solid State Chem. 51, 141 (1984).Google Scholar
  5. (3).
    P. Gressier, M.H. Whangbo, A. Meerschaut, J. Rouxel, Inorg. Chem. 23, 1221 (1984).Google Scholar
  6. (4) a).
    R.E. Peierls, “Quantum Theory of Solids”, Oxford University Press, London, 1955, p. 108.Google Scholar
  7. (4) b).
    M.H. Whangbo, Acc. Chem. Res. 16, 95 (1983).Google Scholar
  8. (5) a).
    R. Hoffmann, J. Chem. Phys. 39, 1397 (1963).Google Scholar
  9. (5) b).
    M.H. Whangbo, R. Hoffmann, J Am. Chem. Soc. 100, 6093 (1978).Google Scholar
  10. (5) c).
    M.H. Whangbo, R. Hoffmann, R.B. Woodward, Proc. R. Soc. London, Ser. A 366, 23 (1979).Google Scholar
  11. (6).
    A. Meerschaut, P. Palvadeau, J. Rouxel, J. Solid State Chem. 20, 21 (1977).Google Scholar
  12. (7).
    C. Roucau, R. Ayroles, P. Gressier, A. Meerschaut, J. Phys. C: Solid State Phys. 17, 2993 (1984).Google Scholar
  13. (8).
    P. Gressier, L. Guémas, A. Meerschaut, Acta Cryst. B38, 2877 (1982).Google Scholar
  14. (9).
    Z.Z. Wang, M.C. Saint Lager, P. Monceau, M. Renard, P. Gressier, A. Meerschaut, L. Guémas, J. Rouxel, Solid State Commun 46, 325 (1983).Google Scholar
  15. (10).
    M. Maki, M. Kaiser, A. Zettl, G. Gruner, Solid State Commun 46, 497 (1983).Google Scholar
  16. (11).
    H. Fujishita, M. Sato, S. Hoshino, Solid State Commun 49, 313 (1984).Google Scholar
  17. (12).
    A. Meerschaut, P. Gressier, L. Guémas, J. Rouxel, J. Solid State Chem. 51, 307 (1984).Google Scholar
  18. (13).
    Z.Z. Wang, P. Monceau, M. Renard, P. Gressier, L. Guémas, A. Meerschaut, Solid State Commun. 47, 439 (1983).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • P. Gressier
    • 1
  • A. Meerschaut
    • 1
  • J. Rouxel
    • 1
  • M. H. Whangbo
    • 1
  1. 1.Laboratoire de Physicochimie des SolidesNantes CedexFrance

Personalised recommendations