Nonasymptotic critical phenomena

  • Volker Dohm
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 216)


Solid Helium Nonuniversal Coupling Absolute Temperature Scale Universal Amplitude Ratio Critical Temperature Dependence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. M.E. Fisher, Rep. Progr. Phys. 30,615 (1967); Rev. Mod. Phys. 46, 597 (1974).Google Scholar
  2. 2.
    F. Wegner, Phys. Rev. B5, 4529 (1972).Google Scholar
  3. 3.
    G. Ahlers, in The Physics of Liquid and Solid Helium,edited by K;.H.Bennemann and J.B. Ketterson (Wiley, 1976) Vol.1.Google Scholar
  4. 4.
    J.M. H. Levelt Sengers and J.V. Sengers, in Perspectives in Statistical Physics, ed. by H.J. Ravecé (North-Holland, 1981).Google Scholar
  5. 5.
    E. Brézin, J.C. Le Guillou, and J.Zinn-Justin, in Phase Transitions and Critical Phenomena, edited by C. Domb and M.S. Green (Academic, (1976) Vol.6; D.J. Amit, Field Theory, The Renormalization Group, and Critical Phenomena (Mc Graw-Hill, 1978).Google Scholar
  6. 6.
    J.C. Le Guillou and J.Zinn-Justin, Phys. Rev. B21, 3976 (1980).Google Scholar
  7. 7.
    A.A. Vladimirov, D.I. Kazakov, and O.V. Tarasov, Zh. Eksp. Teor. Fiz. 77, 1035 (1979) [Sov. phys. JETP 50, 521 (1979)].Google Scholar
  8. 8.
    C. de Dominicis and L. Peliti, Phys. Rev. B 18, 353 (1978); R.A. Ferrell and J.K. Bhattacharjee, Phys. Rev. Lett. 42, 1638 (1979); V. Dohm and R. Folk, Phys. Rev. Lett. 46, 349 (1981); Z. Phys. B 40, 79 (1980); Phys. Rev. B 28 1332 (1983); G.Ahlers, P.C. Hohenberg, and A. Kornblit, Phys. Rev. B 25, 3136 (1982).Google Scholar
  9. 9.
    See e.g. V. Dohm and R. Folk, in Feskörperprobleme (Advances in Solid State Physics) Vol XXIII, ed. by P. Grosse (Vieweg, 1982); V. Dohm, in Multicritical Phenomena, edited by R. Pynn and A. Skjeltorp (Plenum, 1984).Google Scholar
  10. 10.
    See e.g. J.F. Nicoll, T.S. Chang, and H.E. Stanley, Phys. Rev.B12, 458 (1975); T.S. Chang, C.W. Garland, and J. Thoen, Phys. Rev. A 16, 446 (1977). For very recent work on crossover functions see J.F. Nicoll and P. C. Albright, University of Maryland preprint (June 1984), submitted to Phys. Rev. B.Google Scholar
  11. 11.
    C. Bagnuls and C. Bervillier, Phys. Rev. B 27, 6995 (1983); J. Phys. Lett. 45, L-95 (1984)Google Scholar
  12. 12.
    C. Bagnuls and C. Bervillier, J. Phys. Lett. 45, L–127 (1984); and preprint.Google Scholar
  13. 13.
    V. Dohm, General Relation between the Specific Heat above and below a Second-Order Phase Transition, submitted to Phys. Rev. Lett.Google Scholar
  14. 14.
    J.A. Lipa and T.C.P. Chui, Phys. Rev. Lett. 51, 2291 (1983); G. Ahlers, Phys. Rev. A 3, 696 (1971); K.H. Müeller, G. Ahlers, and F. Pobell, Phys. Rev. B 14, 2096 (1976).Google Scholar
  15. 15.
    V. Dohm, in Proceedings of the 17th International Conference on Low Temperaure Physics, Karlsruhe, edited by U. Eckern, A.Schmid, W.Weber and H. Wühl (North Holland, 1984)Google Scholar
  16. 16.
    M.C. Chang and A. Houghton, Phys. Rev. B 21, 1881 (1980) The definition of CH differs from the present Cφin Eq. (2) by a factor of ¼.Google Scholar
  17. 17.
    I wish to thank D.J. Wallace for an interesting discussion on this aspect. For asymptotic results see G.S. Pawley, R. H. Swendsen, D.J. Wallace,and K.G. Wilson, Phys. Rev. B 29, 4030 (1984).Google Scholar
  18. 18.
    E. Brézin, J.C. LeGuillou, and J. Zinn-Justin, Phys. Lett. 47A, 285 (1974); C. Bervillier, Phys. Rev. B14, 4964 (1976); see also Y. Okabe and K. Ideura, Prog. Theor. Phys. 66, 1959 (1981).Google Scholar
  19. 19.
    Note that in calculating (21) we have not expanded the geometrical factor Kd introduced in (4).Google Scholar
  20. 20.
    Here we have used u* = ε[1 + 3ε(3n+14)/(n+8)2]/4(n+8) + 0(ε3) ≡ u*ε (2) + O(ε3).Google Scholar
  21. 21.
    A. Singsaas and G. Ahlers, preprint.Google Scholar
  22. 22.
    u*ε corresponds to go/12 of Ref. 7; this is consistent with our normalization of u* which corresponds to the β-function βu = −εu + 4(n+8)u2 + o(u3).Google Scholar
  23. 23.
    Note that we have normalized u3 in such a way that the coefficient of the second term of the d = 3 β-function becomes identical with that of βu = −u + 4(n+8)u2 + 0(u3). Thus we define u*3 = g*/4(n+8) where g* is taken from J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977).Google Scholar
  24. 24.
    M.E. Fisher, discussion at this conference.Google Scholar
  25. 25.
    K.S. Liu and M.E. Fisher, J. Low Temp. Phys. 10, 655 (1973); M.E. Fisher and D.R. Nelson, Phys. Rev. Lett. 32, 1350 (1974).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Volker Dohm
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Hochschule AachenAachenGermany

Personalised recommendations