Surface tension and supercooling in solidification theory

  • Gunduz Caginalp
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 216)


Surface Tension Interfacial Region Free Boundary Problem Invariant Region Stefan Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Caginalp: “An Analysis of a Phase Field Model of a Free Boundary”, Carnegie-Mellon University Preprint (1983).Google Scholar
  2. 2.
    L.I. Rubinstein, “The Stefan Problem”, Am. Math. Soc. Transl. 27, American Mathematical Society, Providence, RI (1971).Google Scholar
  3. 3.
    O.A. Oleinik, “A Method of Solution of the General Stefan Problem“, Sov. Math. Dokl. 1 (1960), 1350–1354.Google Scholar
  4. 4.
    P.C. Hohenberg and B.I. Halperin, “Theory of Dynamic Critical Phenomena”, Reviews of Modern Physics 49 (1977), 435–480.Google Scholar
  5. 5.
    J. W. Gibbs, Collected Works, Yale University Press, New Haven, CT (1948).Google Scholar
  6. 6.
    D.W. Hoffman and J.W. Cahn, “A Vector Thermodynamics for Anisotropic Surfaces I. Fundamentals and Application to Plane Surface Junctions”, Surface Science 31 (1972), 368–388.Google Scholar
  7. 7.
    J.W. Cahn and D.W. Hoffman, “A Vector Thermodynamics for Anisotropic Surfaces II. Curved and Faceted Surfaces”, Acta Metallurgica 22 (1974), 1205–1214.Google Scholar
  8. 8.
    W.W. Mullins, “The Thermodynamics of Crystal Phases With Curved Interfaces: Special Case of Interface Isotropy and Hydrostatic Pressure”, Proc. Int. Conf. on Solid-Solid Phase Transformations, H.I. Erinson, et al., eds., TMS-AIMS, Warrendale, PA (1983).Google Scholar
  9. 9.
    W.W. Mullins, “Thermodynamic Equilibrium of a Crystal Sphere in a Fluid”, Carnegie-Mellon University research report (1983).Google Scholar
  10. 10.
    K. Chueh, C. Conley, and J. Smoller, “Positively Invariant Regions for Systems of Nonlinear Diffusion Equations”, Indiana Univ. Math. J. 26 (1977), 373–392.Google Scholar
  11. 11.
    G. Fix and J.T. Lin: Private communication.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Gunduz Caginalp
    • 1
  1. 1.Department of MathematicsCarnegie-Mellon UniversityPittsburgh

Personalised recommendations