Rigorous studies of critical behavior

  • Michael Aizemnan
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 216)


Ising Model Critical Behavior Perturbative Result Brownian Path Bare Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Frőhlich, Lecture Notes of the Cargése (1983) Summer School.Google Scholar
  2. 2.
    M. Aizenman, “The Intersection of Brownian Paths as a Case Study of a Renormalization Group Method for Quantum Field Theory”, to appear in Commun. Math. Phys.Google Scholar
  3. 3.
    G. Felder and J. Frőhlich, “Intersection Properties of Simple Random Walks: A Renormalization Group Approach”, to appear in Commun. Math. Phys.Google Scholar
  4. 4.
    M. Aizenman, Phys. Lett. 47, 1 (1981) and Commun. Math. Phys. 86, 1 (1982).Google Scholar
  5. 5.
    D. Brydges, J. Fröhlich and T. Spencer, Commun. Math. Phys. 83, 123 (1982).Google Scholar
  6. 6.
    J. Fröhlich, B. Simon and T. Spencer, Commun. Math. Phys. 50, 79 (1976).Google Scholar
  7. 7.
    M. Aizenman, “Absence of an Intermediate Phase in a General Class of One Component Ferromagnetic Systems in d>2 Dimensions”, in preparation.Google Scholar
  8. 8.
    J. Glimm and A. Jaffe, Phys. Rev. D10, 536 (1974).Google Scholar
  9. 9.
    O. A. McBryan and J. Rosen, Commun. Math. Phys. 51, 97 (1976).Google Scholar
  10. 10.
    M. Aizenman and R. Graham, Nucl. Phys. B225 [FS9], 261 (1983).Google Scholar
  11. 11.
    A. D. Sokal, Phys. Lett. 71A, 451 (1979).Google Scholar
  12. 12.
    J. Fröhlich, Nucl. Phys. B200 [FS4], 281 (1982).Google Scholar
  13. 13.
    C. Aragao de Carvalho, S. Caraciolo and J. Fröhlich, Nucl. Phys. B215 [FS7], 209 (1983).Google Scholar
  14. 14.
    M. Aizenman and C. M. Newman, “Tree Diagram Bounds and the Critical Behavior in Percolation Models”, to appear in J. Stat. Phys.Google Scholar
  15. 15.
    S. Kakutani, Proc. Japan Acad. 20, 648 (1944).Google Scholar
  16. 16.
    A. Dvoretzky, P. Erdös and S. Kakutani, Acta Sci. Math. (Szeged) 12, 75 (1950).Google Scholar
  17. 17.
    G. Lawler, Comm. Math. Phys. 86, 539 (1982).Google Scholar
  18. 18.
    E. Brézin, J. C. Le Guillou and J. Zinn-Justin, in Phase Transitions and Critical Phenomena, eds. C. Domb and M. S. Green (Academic Press, 1976).Google Scholar
  19. 19.
    M. E. Fisher, Phys. Rev. 162, 480 (1967).Google Scholar
  20. 20.
    K. Symanzik, J. Math. Phys. 7, 510 (1966).Google Scholar
  21. 21.
    R. Griffiths, C. Hurst and S. Sherman, J. Math. Phys. 11, 790 (1970).Google Scholar
  22. 22.
    D. Brydges, J. Fröhlich and A. Sokal, Common. Math. Phys. 91, 141 (1983).Google Scholar
  23. 23.
    A. D. Sokal, Ann. Inst. Henri Poincaré A37, 317 (1982).Google Scholar
  24. 24.
    R. Griffiths, J. Math. Phys. 10, 1559 (1969).Google Scholar
  25. 25.
    B. Simon and R. Griffiths, Commun. Math. Phys. 33, 145 (1973).Google Scholar
  26. 26.
    J. Glimm and A. Jaffe, Quantum Physics (Springer Verlag, 1981).Google Scholar
  27. 27.
    K. G. Wilson and J. Kogut, Physics Reports 12, No. 2, 75 (1974).Google Scholar
  28. 28.
    C. M. Newman, Commun. Math. Phys. 41, 1 (1975).Google Scholar
  29. 29.
    A. Bovier and G. Felder, Commun. Math. Phys. 93, 259 (1984).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Michael Aizemnan
    • 1
  1. 1.Departments of Mathematics and PhysicsRutgers UniversityNew Brunswick

Personalised recommendations