The statistical mechanics of surfaces

  • Jürg Fröhlich
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 216)


Applications of a statistical mechanics of random surfaces in condensed matter physics and relativistic quantum field theory are sketched. Different random surface models are introduced. Their common mean-field theory is briefly described. The so-called planar random surface — (or Nambu-Goto string-) model, a surface analogue of Brownian motion, is studied in more detail and shown to exhibit mean-field behaviour in all dimensions.


Gauge Theory Domain Wall Isomorphism Class Hausdorff Dimension String Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    D.J. Wallace and R.K.P. Zia, Phys. Rev. Lett. 43, 808 (1979)Google Scholar
  2. 1b.
    M.J. Lowe and D.J. Wallace, Phys. Lett. 93B, 433 (1980); J. Phys. A13, L381 (1980)Google Scholar
  3. 1c.
    F. David, Phys. Lett. 102B, 193 (1981)Google Scholar
  4. 1d.
    M.E. Fisher and D.S. Fisher, Phys. Rev. B25, 3192 (1982)Google Scholar
  5. 1e.
    P.G. De Gennes and C. Taupin, J. Phys. Chemistry 86, 2293 (1983)Google Scholar
  6. 1f.
    M. Falkowitz et al., Proc. Natl. Acad. Sci. USA 79, 3918 (1982)Google Scholar
  7. 1g.
    D. Avnir and P. Pfeifer, Chemistry in Non-Integer Dimension Between Two and Three, Preprint, 1983; Refs. 3 (and refs. given there), 18, 25, 26; and many others.Google Scholar
  8. 2.
    J. Fröhlich, C.-E. Pfister and T. Spencer, “On the Statistical Mechanics of Surfaces”, in: Springer Lecture Notes in Physics 173, 169–199, Berlin-Heidelberg-New York: Springer-Verlag 1982.Google Scholar
  9. 3.
    C.E. Pfister, “Interface and Surface Tension in Ising Model”, in “Scaling and Self-Similarity in Physics”, J.Fröhlich (ed.), Progress in Physics vol. 7, Boston-Basel-Stuttgart: Birkhäuser Verlag 1983.Google Scholar
  10. 4a.
    F. Wegner, J. Math. Phys. 12, 2259 (1971)Google Scholar
  11. 4b.
    K. Wilson, Phys. Rev. D10, 2445 (1974)Google Scholar
  12. 4c.
    For a review, see: E. Séiler, “Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics”, Springer Lecture Notes in Physics 159, Berlin-Heidelberg-New York: Springer-Verlag 1982.Google Scholar
  13. 5a.
    B. Durhuus and J. Fröhlich, Commun. Math. Phys. 75, 103, (1980)Google Scholar
  14. 5b.
    J. Fröhlich, Physics Reports 67, 137 (1980).Google Scholar
  15. 6.
    D. Brydges, J. Fröhlich and A. Sokal, in preparation.Google Scholar
  16. 7a.
    B. De Wit and G. 't Hooft, Phys. Lett. 69B, 61 (1977)Google Scholar
  17. 7b.
    V.A. Kazakov, Phys. Lett. 128B, 316 (1983)Google Scholar
  18. 7c.
    I.K. Kostov, “Multicolor QCD in Terms of Random Surfaces”, Preprint 1933.Google Scholar
  19. 8.
    J. Fröhlich, “Quantum Field Theory in Terms of Random Walks and Random Surfaces”, Proceedings of the Cargèse summer school on “Progress in Gauge Theory”, 1983, G. 't Hooft et al. (eds.), to appear.Google Scholar
  20. 9a.
    B. Durhuus, J. Fröhlich and T. Jönsson, Nucl. Phys. B225 [FS9], 185 (1983)Google Scholar
  21. 9b.
    For earlier results, see: D. Weingarten, Phys. Lett. 90B, 285 (1980)Google Scholar
  22. 9c.
    T. Eguchi and H. Kawai, Phys. Lett. 110B, 143 (1980).Google Scholar
  23. 10.
    M. Aizenman and J. Fröhlich, Nucl. Phys. B 235 [FS11], 1 (1984).Google Scholar
  24. 11a.
    Y. Nambu, in “Symmetries and Quark Models”, R. Chaud (ed.), New York: Gordon & Breach, 1970Google Scholar
  25. 11b.
    T. Goto, Progr. Theor. Phys. 46, 1560 (1971).Google Scholar
  26. 12.
    A.M. Polyakov, Phys. Lett. 103 B 1207 (1981).Google Scholar
  27. 13a.
    B. Durhuus, P. Olesen and J.L. Petersen, Nucl. Phys. B198, 157 (1982)Google Scholar
  28. 13b.
    O. Alvarez, Nucl. Phys. B216, 125 (1983).Google Scholar
  29. 14.
    B. Durhuus, J. Fröhlich and T. Jbnsson, “Critical Behaviour in a Model of Planar Random Surfaces”, Nucl. Phys. B, in press.Google Scholar
  30. 15a.
    “Phase Transitions and Critical Phenomena”, C. Domb and M. S. Green (eds.), vol. 6, New York: Academic PressGoogle Scholar
  31. 15b.
    S.K. Ma, “Modern Theory of Critical Phenomena”, London-Amsterdam-Don Mills, Ontario: Benjamin 1976Google Scholar
  32. 15c.
    D. Amit, “Field Theory, Renormalization Group and Critical Phenomena”, New York: Mc Graw-Hill, 1978.Google Scholar
  33. 16a.
    G. Parisi, Phys. Lett. 81B, 357 (1979)Google Scholar
  34. 16b.
    J.M. Drouffe, G. Parisi and N. Sourlas, Nucl. Phys. B161, 397 (1980).Google Scholar
  35. 17.
    M. Aizenman, J.T. Chayes, L. Chayes, J. Fröhlich and L. Russo, Commun. Math. Phys. 92, 19 (1983).Google Scholar
  36. 18a.
    H.J. Leamy, G.H. Gilmer and K.A. Jackson: in “Surface Physics of Crystalline Materials”, J.M. Blakely (ed.), New York: Academic Press 1976Google Scholar
  37. 18b.
    H. Müller-Krumbhaar, in “Crystal Growth and Materials”; E. Kaldis and H. Scheel (eds.), Dordrecht: North Holland 1977Google Scholar
  38. 18c.
    J.D. Weeks, G.H. Gilmer and H.J. Leamy, Phys. Rev. Lett. 31, 549 (1979)Google Scholar
  39. 18d.
    H. van Beijeren, Phys. Rev. Lett. 38, 993 (1977), ref. 3.Google Scholar
  40. 19a.
    H. Kawai and Y. Okamoto, Phys. Lett. 130B, 415 (1983)Google Scholar
  41. 19b.
    B. Berg and A. Billoire, DESY Preprint, l984.Google Scholar
  42. 20.
    L. Russo, Z. Wahrscheinlichkeitstheorie Verw. Geb. 56, 229 (1981).Google Scholar
  43. 21a.
    J. Koplik, A. Neveu and S. Nussinov, Nucl. Phys. B123, 109 (1977)Google Scholar
  44. 21b.
    D. Bessis, C. Itzykson and J.-B. Zuber, Adv. Appl. Math. 1, 109 (1980)Google Scholar
  45. 21c.
    G. Felder, private communication.Google Scholar
  46. 22.
    B. Durhuus and J. Fröhlich, G. Felder, unpublished, (papers in preparation).Google Scholar
  47. 23.
    A. Billoire, D.J. Gross and E. Marinari, “Simulating Random Surfaces”, Phys. Letts. B, to appear; D.J. Gross, “The Size of Random Surfaces”, Preprint 1984; B. Duplantier, “Random Surfaces in High Dimensions”, Preprint 1984.Google Scholar
  48. 24a.
    G. 't Hooft, Commun. Math. Phys. 86, 449 (1982); 88, 1 (1983)Google Scholar
  49. 24b.
    V. Rivasseau, Construction and Borel Summability of Planar 4-Dimensional Euclidean Field Theory, Preprint 1984.Google Scholar
  50. 25.
    J. Fröhlich and T. Spencer, Phys. Rev. Lett. 46, 1006 (1981); Commun. Math. Phys. 81, 527 (1981).Google Scholar
  51. 26.
    R.L. Dobrushin, Theor. Prob. Appl. 17, 582 (1972); Theor. Prob. Appl. 18, 253 (1973); See also ref. 3, and refs. given there.Google Scholar
  52. 27.
    M. Löscher, K. Symanzik and P. Weisz, Nucl. Phys. B173, 365 (1980).Google Scholar
  53. 28.
    B. Durhuus, J. Fröhlich and T. Jönsson, Phys. Lett. 137 B, 93 (1984); paper in preparation.Google Scholar
  54. 29.
    D.B. Abraham, J.T. Chayes and L. Chayes, “Random Surface Correlation Functions”, submitted to Commun. Math. Phys.Google Scholar
  55. 30a.
    K. Osterwalder and R. Schrader, Commun. Math. Phys. 31, 83 (1973), 42,281 (1975).Google Scholar
  56. 30b.
    See also: V. Glaser, Commun. Math. Phys. 37, 257 (1974).Google Scholar
  57. 31.
    G. Felder, private communication.Google Scholar
  58. 32.
    G. Felder and J. Fröhlich, “Intersection Properties of Simple Random Walks: A Renormalization Group Approach”, Commun. Math. Phys., in press.Google Scholar
  59. 33.
    G. Gallavotti, F. Guerra and S. Miracle Solé, in “Mathematical Problems in Theoretical Physics”, G. Dell'Antonio et al. (eds.); Lecture Notes in Physics 80, Berlin-Heidelberg-New York, Springer Verlag 1978.Google Scholar
  60. 34a.
    A. Guth, Phys. Rev. D 21, 2291 (1980)Google Scholar
  61. 34b.
    J. Fröhlich and T. Spencer, Commun. Math. Phys. 83, 411 (1982).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Jürg Fröhlich
    • 1
  1. 1.Theoretical PhysicsZürichSwitzerland

Personalised recommendations